Caltech

EnKF

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

Numerics

Ensemble Kalman Inversion: A Derivative-Free Technique For Machine Learning Tasks

Nikola B. Kovachki¹ Andrew M. Stuart¹

¹Computational and Mathematical Sciences California Institute of Technology

> Applied Inverse Porblems July 8-12th, 2019

Caltech Challenges

EnKF

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

- Issues with gradient-based methods:
 - Suffer when parallelized
 - Hard to do Bayesian inference
 - Vanishing/Exploding gradients
 - Non-differentiable loss/model

Caltech Table of Contents

1 Invese Problems

EnKF

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

Numerics

Caltech Table of Contents

EnKF

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

Numerics

1 Invese Problems

2 Ensemble Kalman Inversion

EnKF

De Vito, Rosasco, Caponnetto, De Giovannini, and Odone 2005. (JMLR)

• **Data**: $\{(x_j, y_j)\}_{i=1}^N$ with $x_j \in \mathcal{X}$, $y_j \in \mathcal{Y}$.

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

EnKF

De Vito, Rosasco, Caponnetto, De Giovannini, and Odone 2005. (JMLR)

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

- **Data**: $\{(x_j, y_j)\}_{j=1}^N$ with $x_j \in \mathcal{X}$, $y_j \in \mathcal{Y}$.
 - Find: $\mathcal{G}(u|\cdot): \tilde{\mathcal{X}} \to \mathcal{Y}$ for parameter $u \in \mathcal{U}$ consistent with the data.

EnKF

De Vito, Rosasco, Caponnetto, De Giovannini, and Odone 2005. (JMLR)

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

Numerics

- **Data**: $\{(x_j, y_j)\}_{j=1}^N$ with $x_j \in \mathcal{X}$, $y_j \in \mathcal{Y}$.
- Find: $\mathcal{G}(u|\cdot): \tilde{\mathcal{X}} \to \mathcal{Y}$ for parameter $u \in \mathcal{U}$ consistent with the data.
- Concatenate:

$$y = G(u|x) + \eta$$

where $G(\cdot|x) : \mathcal{U} \to \mathcal{Y}^N$ and η is model or data error.

EnKF

De Vito, Rosasco, Caponnetto, De Giovannini, and Odone 2005. (JMLR)

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

Numerics

- **Data**: $\{(x_j, y_j)\}_{j=1}^N$ with $x_j \in \mathcal{X}$, $y_j \in \mathcal{Y}$.
 - Find: $\mathcal{G}(u|\cdot): \check{\mathcal{X}} \to \mathcal{Y}$ for parameter $u \in \mathcal{U}$ consistent with the data.
- Concatenate:

$$y = G(u|x) + \eta$$

where $G(\cdot|x): \mathcal{U} \to \mathcal{Y}^N$ and η is model or data error.

• **Losses**: Φ(*u*; ×, y)

$$rac{1}{2}\| extsf{y}- extsf{G}(u| extsf{x})\|_{\mathcal{Y}^N}^2+R(u) \quad extsf{or} \quad -\sum_{j=1}^N \langle y_j, \log \mathcal{G}(u|,x_j)
angle_{\mathcal{Y}}+R(u)$$

EnKF

De Vito, Rosasco, Caponnetto, De Giovannini, and Odone 2005. (JMLR)

- Kovachki & Stuart
- **Invese Problems**

Ensemble Kalman Inversion

Numerics

- **Data**: $\{(x_j, y_j)\}_{j=1}^N$ with $x_j \in \mathcal{X}$, $y_j \in \mathcal{Y}$.
- Find: $\mathcal{G}(u|\cdot): \tilde{\mathcal{X}} \to \mathcal{Y}$ for parameter $u \in \mathcal{U}$ consistent with the data.
- Concatenate:

$$\mathsf{y} = \mathsf{G}(u|\mathsf{x}) + \eta$$

where $G(\cdot|x): \mathcal{U} \to \mathcal{Y}^N$ and η is model or data error.

• **Losses**: Φ(*u*; ×, y)

$$\frac{1}{2} \| \mathsf{y} - \mathsf{G}(u|\mathsf{x}) \|_{\mathcal{Y}^N}^2 + R(u) \quad \text{or} \quad -\sum_{j=1}^N \langle y_j, \log \mathcal{G}(u|, x_j) \rangle_{\mathcal{Y}} + R(u)$$

• Standard Solution (SGD):

$$\begin{split} \dot{u} &= -\nabla_u \Phi(u; \mathsf{x}, \mathsf{y}); \quad u(0) = u_0 \\ u^* &= u(T) \end{split}$$

EnKF

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

Numerics

• **Data**: As before possibly with $N = \infty$.

EnKF

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

- **Data**: As before possibly with $N = \infty$.
- **Dynamic**: For *j* = 0, 1, 2, . . .

$$u_{j+1} = u_j$$

 $y_{j+1} = \mathcal{G}(u_{j+1}|x_{j+1}) + \eta_{j+1}$

EnKF

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

• **Data**: As before possibly with
$$N = \infty$$
.

• **Dynamic**: For
$$j = 0, 1, 2, ...$$

$$u_{j+1} = u_j$$

 $y_{j+1} = \mathcal{G}(u_{j+1}|x_{j+1}) + \eta_{j+1}$

• Find:
$$u_j$$
 given $Y_j = \{y_k\}_{k=1}^j$ and update sequentially.

EnKF

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

 $y_{j+1} = \mathcal{G}(u_{j+1}|x_{j+1}) + \eta_{j+1}$ • Find: u_j given $Y_j = \{y_k\}_{k=1}^j$ and update sequentially. • Loss: $\Phi(u; x, y)$

 $u_{i+1} = u_i$

$$\frac{1}{2}\|y - \mathcal{G}(u|x)\|_{\mathcal{Y}}^2 + R(u) \quad \text{or} \quad -\langle y, \log \mathcal{G}(u|x) \rangle_{\mathcal{Y}} + R(u)$$

• **Data**: As before possibly with $N = \infty$.

• **Dynamic**: For i = 0, 1, 2, ...

uart

EnKF

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

Vumerics

- **Data**: As before possibly with $N = \infty$.
- **Dynamic**: For *j* = 0, 1, 2, . . .

$$u_{j+1} = u_j$$

 $y_{j+1} = \mathcal{G}(u_{j+1}|x_{j+1}) + \eta_{j+1}$

Find: u_j given Y_j = {y_k}^j_{k=1} and update sequentially.
 Loss: Φ(u; x, y)

$$rac{1}{2} \|y - \mathcal{G}(u|x)\|_{\mathcal{Y}}^2 + R(u) \quad ext{or} \quad - \langle y, \log \mathcal{G}(u|x) \rangle_{\mathcal{Y}} + R(u)$$

• Standard Solution (OGD):

$$\dot{u} = -\nabla_u \Phi(u; x_{j+1}, y_{j+1}); \quad u(0) = u_j$$

 $u_{j+1} = u(T_j)$

Caltech Table of Contents

EnKF

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

Numerics

EnKF

Kantas, Beskos, Jasra, 2014. (JUQ)

Kovachki & Stuart Iglesias, Law and Stuart, 2013. (IP)

• Inverse Problem:

 $\mathbf{y} = \mathsf{G}(u) + \eta \qquad \eta \sim \mathcal{N}(\mathbf{0}, \mathsf{\Gamma}) \ u \sim \mu_0(u)$

Inversion

Ensemble

Kalman

EnKF

Kantas, Beskos, Jasra, 2014. (JUQ)

Kovachki & Stuart Iglesias, Law and Stuart, 2013, (IP)

• Inverse Problem:

 $\mathbf{y} = \mathsf{G}(u) + \eta \qquad \eta \sim \mathcal{N}(\mathbf{0}, \mathsf{\Gamma}) \ u \sim \mu_{\mathbf{0}}(u)$

Ensemble Kalman Inversion

Numerics

• Sequential Monte Carlo (SMC):

 $\mu_{n+1}(du) \propto \exp(-hn\Phi(u;y))\mu_0(du)$

EnKF

Kovachki & Stuart

Ensemble Kalman

Inversion

Kantas, Beskos, Jasra, 2014. (JUQ)

Iglesias, Law and Stuart, 2013. (IP)

• Inverse Problem:

 $\mathbf{y} = \mathsf{G}(u) + \eta \qquad \eta \sim \mathcal{N}(\mathbf{0}, \mathsf{\Gamma}) \ u \sim \mu_{\mathbf{0}}(u)$

• Sequential Monte Carlo (SMC):

 $\mu_{n+1}(du) \propto \exp(-hn\Phi(u;y))\mu_0(du)$

• Approximate SMC (EnKF):

$$u_{n+1}^{(j)} = u_n^{(j)} + C^{uw}(u_n)(C^{ww}(u_n) + \Gamma)^{-1}(y - G(u_n^{(j)}))$$

EnKF

Kantas, Beskos, Jasra, 2014. (JUQ)

Kovachki & Stuart Iglesias, Law and Stuart, 2013. (IP)

• Inverse Problem:

 $\mathbf{y} = \mathsf{G}(u) + \eta \qquad \eta \sim \mathcal{N}(\mathbf{0}, \mathsf{\Gamma}) \ u \sim \mu_{\mathbf{0}}(u)$

• Sequential Monte Carlo (SMC):

$$\mu_{n+1}(du) \propto \exp(-hn\Phi(u;y))\mu_0(du)$$

• Approximate SMC (EnKF):

 $u_{n+1}^{(j)} = u_n^{(j)} + C^{uw}(u_n)(C^{ww}(u_n) + \Gamma)^{-1}(y - G(u_n^{(j)}))$

• **Continous-time**: $\Gamma \mapsto \frac{1}{h}\Gamma$, $h \to 0$

$$\dot{u}^{(j)} = -\frac{1}{J} \sum_{k=1}^{J} \langle G(u^{(k)}) - \bar{G}, G(u^{(j)}) - y \rangle_{\Gamma} u^{(k)}$$

Ensemble Kalman Inversion

Approximate Natural Gradient Decent Caltech

EnKF

Kovachki & Stuart

Ensemble Kalman Inversion

Amari, 1998, (NC)

where

Ollivier, 2017. (CoRR); Ollivier, 2019. (CoRR)

• Linear: $G(\cdot) = A \cdot$ $\dot{u}^{(j)} = -C(u)\nabla_{u}\Phi(u^{(j)}, \mathbf{y})$

 $C(u) = rac{1}{J} \sum_{i=1}^{J} (u^{(j)} - \bar{u}) \otimes (u^{(j)} - \bar{u}); \quad \Phi(u, y) = rac{1}{2} \|y - Au\|_{\Gamma}^{2}$

Approximate Natural Gradient Decent Caltech

EnKF

Kovachki & Stuart

Ensemble Kalman Inversion

Amari, 1998, (NC)

Ollivier, 2017. (CoRR); Ollivier, 2019. (CoRR)

• Linear: $G(\cdot) = A \cdot$ $\dot{u}^{(j)} = -C(u)\nabla_{u}\Phi(u^{(j)}, \mathbf{y})$

where

$$C(u) = rac{1}{J} \sum_{j=1}^{J} (u^{(j)} - \bar{u}) \otimes (u^{(j)} - \bar{u}); \quad \Phi(u, y) = rac{1}{2} \|y - Au\|_{\Gamma}^{2}$$

• Natural Gradient Decent:

$$\dot{u} = -F^{-1}(u)\nabla_u\Phi(u,y)$$

Approximate Natural Gradient Decent Caltech

EnKF

Amari, 1998, (NC)

Kovachki & Stuart

Ensemble Kalman Inversion

Ollivier, 2017. (CoRR); Ollivier, 2019. (CoRR)

• Linear: $G(\cdot) = A \cdot$ $\dot{u}^{(j)} = -C(u)\nabla_u \Phi(u^{(j)}, \mathbf{y})$

where

$$C(u) = rac{1}{J} \sum_{j=1}^{J} (u^{(j)} - \bar{u}) \otimes (u^{(j)} - \bar{u}); \quad \Phi(u, y) = rac{1}{2} \|y - Au\|_{\Gamma}^{2}$$

• Natural Gradient Decent:

$$\dot{u} = -F^{-1}(u)\nabla_u\Phi(u,y)$$

Cramér-Rao:

$$C(u) \succeq F^{-1}(u)$$

Caltech Approximate Natural Gradient Decent

• Non-linear: $G(\cdot)$

EnKF

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

$$\begin{aligned} \mathsf{G}(u^{(k)}) &= \mathsf{G}(u^{(j)} + u^{(k)} - u^{(j)}) \approx \mathsf{G}(u^{(j)}) + D\mathsf{G}(u^{(j)})(u^{(k)} - u^{(j)}) \\ \mathsf{G}(u^{(l)}) &= \mathsf{G}(u^{(j)} + u^{(l)} - u^{(j)}) \approx \mathsf{G}(u^{(j)}) + D\mathsf{G}(u^{(j)})(u^{(l)} - u^{(j)}) \end{aligned}$$

Caltech Approximate Natural Gradient Decent

EnKF

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

Numerics

$$\begin{aligned} \mathsf{G}(u^{(k)}) &= \mathsf{G}(u^{(j)} + u^{(k)} - u^{(j)}) \approx \mathsf{G}(u^{(j)}) + D\mathsf{G}(u^{(j)})(u^{(k)} - u^{(j)}) \\ \mathsf{G}(u^{(l)}) &= \mathsf{G}(u^{(j)} + u^{(l)} - u^{(j)}) \approx \mathsf{G}(u^{(j)}) + D\mathsf{G}(u^{(j)})(u^{(l)} - u^{(j)}) \end{aligned}$$

• Re-write:

• Non-linear: $G(\cdot)$

$$\begin{split} \dot{u}^{(j)} &= -\frac{1}{J^2} \sum_{k=1}^{J} \sum_{l=1}^{J} \langle \mathsf{G}(u^{(k)}) - \mathsf{G}(u^{(l)}), \mathsf{G}(u^{(j)}) - \mathsf{y} \rangle_{\mathsf{\Gamma}}(u^{(k)} - \bar{u}) \\ &\approx -\frac{1}{J} \sum_{k=1}^{J} \langle D\mathsf{G}^*(u^{(j)})(\mathsf{G}(u^{(j)}) - \mathsf{y}), u^{(k)} - \bar{u} \rangle_{\mathsf{\Gamma}}(u^{(k)} - \bar{u}) \\ &= -\mathcal{C}(u) \nabla_u \Phi(u^{(j)}, \mathsf{y}) \end{split}$$

Caltech Long-time Linear Behavior

EnKF

Schillings and Stuart 2017. (SINUM) Theorem (CS, AMS)

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

Numerics

Suppose $G(\cdot) = A \cdot$ and that y is the image of a truth u^{\dagger} under A. Define $r^{(j)}(t) = u^{(j)}(t) - u^{\dagger}$ then (under some assumptions)

$$Ar^{(j)}(t) = Ar^{(j)}_{\parallel}(t) + Ar^{(j)}_{\perp}(t)$$

with $Ar_{\parallel}^{(j)} \in span\{A(u^{(j)}(0) - \bar{u}(0))\}$ and $Ar_{\perp}^{(j)} \in span\{A(u^{(j)}(0) - \bar{u}(0))\}^{\perp}$. Furthermore

$$egin{aligned} & Ar^{(j)}_{\parallel}(t) = \mathcal{O}\left(rac{1}{t}
ight) \ & Ar^{(j)}_{\perp}(t) = Ar^{(1)}_{\perp}(0) \quad orall t \geq 0. \end{aligned}$$

Caltech Arbitrary Loss

EnKF Kovachki &

Stuart

Ensemble Kalman Inversion • Consider:

$$\begin{split} \dot{u}^{(j)} &= -C^{\mathsf{uw}}(u) \Gamma^{-1}(\mathsf{G}(u^{(j)}) - y) \\ &= -C^{\mathsf{uw}}(u) \nabla_{\mathsf{z}} \Psi(\mathsf{G}(u^{(j)}), \mathsf{y}) \end{split}$$

where

$$C^{\mathrm{uw}}(u) = rac{1}{J} \sum_{j=1}^{J} (u^{(j)} - ar{u}) \otimes (\mathsf{G}(u^{(j)}) - ar{\mathsf{G}}); \quad \Psi(\mathsf{z},\mathsf{y}) = rac{1}{2} \|\mathsf{y} - \mathsf{z}\|_{\mathsf{F}}^2$$

Caltech Arbitrary Loss

EnKF Kovachki &

Stuart

Ensemble Kalman Inversion • Consider:

$$\begin{split} \dot{u}^{(j)} &= -C^{\mathsf{uw}}(u)\Gamma^{-1}(\mathsf{G}(u^{(j)}) - y) \\ &= -C^{\mathsf{uw}}(u)\nabla_{\mathsf{z}}\Psi(\mathsf{G}(u^{(j)}), \mathsf{y}) \end{split}$$

where

$$C^{\mathrm{uw}}(u) = rac{1}{J} \sum_{j=1}^{J} (u^{(j)} - \bar{u}) \otimes (\mathsf{G}(u^{(j)}) - \bar{\mathsf{G}}); \quad \Psi(\mathsf{z},\mathsf{y}) = rac{1}{2} \|\mathsf{y} - \mathsf{z}\|_{\mathsf{F}}^2$$

• New Method: Replace $\frac{1}{2} ||y - z||_{\Gamma}^2$ with arbitrary loss.

Caltech Arbitrary Loss

EnKF Kovachki &

Stuart

Ensemble Kalman Inversion • Consider:

$$\dot{u}^{(j)} = -C^{\mathsf{uw}}(u)\Gamma^{-1}(\mathsf{G}(u^{(j)}) - y)$$
$$= -C^{\mathsf{uw}}(u)\nabla_{\mathsf{z}}\Psi(\mathsf{G}(u^{(j)}), \mathsf{y})$$

where

$$C^{\mathsf{uw}}(u) = rac{1}{J} \sum_{j=1}^{J} (u^{(j)} - \bar{u}) \otimes (\mathsf{G}(u^{(j)}) - \bar{\mathsf{G}}); \quad \Psi(\mathsf{z},\mathsf{y}) = rac{1}{2} \|\mathsf{y} - \mathsf{z}\|_{\mathsf{F}}^2$$

- New Method: Replace $\frac{1}{2} \|y z\|_{\Gamma}^2$ with arbitrary loss.
- Cross Entropy:

$$\Psi(z,y) = -\langle y, \log z \rangle_{\mathcal{Y}^N}, \quad \nabla_z \Psi(\mathsf{G}(u^{(j)}), y) = -\frac{y}{\mathsf{G}(u^{(j)})}$$

Caltech Momentum

EnKF

Su, Boyd, Candes 2015. (JMLR)

• Nesterov EKI:

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

$$\ddot{u}^{(j)} + rac{3}{t}\dot{u}^{(j)} = -C^{\mathsf{uw}}(u)\nabla_{\mathsf{z}}\Psi(\mathsf{G}(u^{(j)}),\mathsf{y})$$

Caltech Momentum

EnKF Kovachki &

Su, Boyd, Candes 2015. (JMLR)

Nesterov EKI:

Stuart Invese Problems

Ensemble Kalman Inversion

Numerics

Figure: Linear problem: ℓ_2 error.

Caltech Discrete Scheme

EnKF

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

• Concatenate:
$$u = [u^{(1)}, \dots, u^{(J)}]$$
 and define $D(u) \in \mathbb{R}^{J \times J}$ by

$$D^{(jk)}(u) = \frac{1}{J} \langle \mathsf{G}(u^{(k)}) - \bar{\mathsf{G}}, \nabla_{\mathsf{z}} \Psi(\mathsf{G}(u^{(j)}), \mathsf{y}) \rangle$$

Caltech Discrete Scheme

EnKF

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

Numerics

Concatenate:
$$u = [u^{(1)}, \dots, u^{(J)}]$$
 and define $D(u) \in \mathbb{R}^{J \times J}$ by
$$D^{(jk)}(u) = \frac{1}{J} \langle \mathsf{G}(u^{(k)}) - \bar{\mathsf{G}}, \nabla_{\mathsf{z}} \Psi(\mathsf{G}(u^{(j)}), \mathsf{y}) \rangle$$

• Discretize:

$$u_{n+1} = u_n - h_n D(u_n) u_n$$

or

$$u_{n+1} = v_n - h_n D(v_n) v_n$$

$$v_{n+1} = u_{n+1} + \frac{n}{n+3} (u_{n+1} - u_n)$$

with $v_0 = u_0$ and adaptive time step: $h_n = \frac{h}{\|D(u_n)\| + \epsilon}$

Initialization, Noise, and Predictions Caltech

Garbuno-Inigo, Hoffmann, Li and Stuart 2019. (CoRR)

• Initial Ensemble:

EnKF

Glorot and Bengio. (JMLR)

Kovachki & Stuart

Ensemble Kalman Inversion

$$u_0^{(1)},\ldots,u_0^{(J)}\sim\mu_0(u)$$

Caltech Initialization, Noise, and Predictions

EnKF

Kovachki & Stuart

Glorot and Bengio. (JMLR)

Garbuno-Inigo, Hoffmann, Li and Stuart 2019. (CoRR)

• Initial Ensemble:

Invese Problems

Ensemble Kalman Inversion

• Mini-batch data (at each step):

$$\mathbf{x}_n = \{x_{i_l^{(n)}}\}_{l=1}^m \quad \mathbf{y}_n = \{y_{i_l^{(n)}}\}_{l=1}^m$$

 $u_0^{(1)},\ldots,u_0^{(J)}\sim\mu_0(u)$

where
$$\{i_1^{(n)}, \dots, i_m^{(n)}\} \subseteq \{1, \dots, N\}$$

Caltech Initialization, Noise, and Predictions

EnKF

Kovachki & Stuart

Glorot and Bengio. (JMLR)

Garbuno-Inigo, Hoffmann, Li and Stuart 2019. (CoRR)

• Initial Ensemble:

Invese Problems

Ensemble Kalman Inversion

Numerics

$$u_0^{(1)},\ldots,u_0^{(J)}\sim\mu_0(u)$$

• Mini-batch data (at each step):

$$\mathbf{x}_n = \{x_{i_i^{(n)}}\}_{i=1}^m \quad \mathbf{y}_n = \{y_{i_i^{(n)}}\}_{i=1}^m$$

where
$$\{i_1^{(n)}, \ldots, i_m^{(n)}\} \subseteq \{1, \ldots, N\}$$
.
Particle Spread:

1

$$u_{n+1}^{(j)} = \bar{u}_n + \xi_{n+1}^{(j)} \qquad \xi_{n+1}^{(j)} \sim \gamma(n) \mu_0(u)$$

expanding ensnemble

Caltech Initialization, Noise, and Predictions

EnKF

Kovachki & Stuart

Glorot and Bengio. (JMLR)

Garbuno-Inigo, Hoffmann, Li and Stuart 2019. (CoRR)

• Initial Ensemble:

Invese Problems

Ensemble Kalman Inversion

Numerics

 $u_0^{(1)},\ldots,u_0^{(J)}\sim\mu_0(u)$

• Mini-batch data (at each step):

$$\mathbf{x}_n = \{x_{i_l^{(n)}}\}_{l=1}^m \quad \mathbf{y}_n = \{y_{i_l^{(n)}}\}_{l=1}^m$$

where $\{i_1^{(n)}, \ldots, i_m^{(n)}\} \subseteq \{1, \ldots, N\}.$ • **Particle Spread**:

1

$$\mu_{n+1}^{(j)} = \bar{u}_n + \xi_{n+1}^{(j)} \qquad \xi_{n+1}^{(j)} \sim \gamma(n) \mu_0(u)$$

expanding ensnemble

• Predict:

$$\bar{u}_{n+1} = \frac{1}{J} \sum_{j=1}^{J} u_{n+1}^{(j)}$$

Caltech Table of Contents

EnKF

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

Numerics

Invese Problems

2 Ensemble Kalman Inversion

Caltech Dense Networks (MNIST)

EnKF

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

Numerics

	DNN 1	DNN 2	DNN 3	DNN 4
SGD	0.9199	0.9735	0.9798	0.9818
MSGD	0.9257	0.9807	0.9830	0.9840
EKI	ū 0.9092	ū 0.9398	ū 0.9424	ū 0.9404
	u ^(j*) 0.9114	$u^{(j^*)}$ 0.9416	$u^{(j^*)}$ 0.9432	$u^{(j^*)}$ 0.9418
MEKI	ū 0.9094	ū 0.9320	n/a	n/a
	$u^{(j^*)}$ 0.9107	$u^{(j^*)}$ 0.9332		
EKI(R)	ū 0.9252	ū 0.9721	ū 0.9738	ū 0.9741
	u ^(j*) 0.9260	$u^{(j^*)}$ 0.9695	$u^{(j^*)}$ 0.9716	$u^{(j^*)}$ 0.9691
MEKI(R)	ū 0.9142	ū 0.9509	n/a	n/a
	u ^(j*) 0.9162	u ^(j*) 0.9511		

Figure: Final test accuracies of six training methods on four dense neural networks, solving the MNIST classification problem. Each bold number is the maximum across the column. For each EKI method we report the accuracy of the mean particle \bar{u} and of the best performing particle in the ensemble $u^{(j^*)}$. The ensemble size is J = 2000.

Caltech Dense Networks (MNIST)

Figure: Comparison of the test accuracies of four EKI methods on DNN 2 with ensemble size J = 6000.

Caltech Ensemble Size Scaling

Figure: MNIST

Figure: FashionMNIST

Caltech Convolutional Networks

EnKF

Romero, Ballas, Kahou, Chassang, Gatta, Bengio, 2015. (ICML)

Kovachki (&
Stuart	

Invese Problems

Ensemble Kalman Inversion

Chassang, Gatta, Bengio, 2015. (ICME)				
CNN-MNIST	CNN-1	CNN-2	CNN-3	
Conv 16x3x3	Conv 16x3x3	Conv 16x3x3	Conv 16x3x3	
Conv 16x3x3	Conv 16x3x3	Conv 16x3x3	Conv 16x3x3	
		Conv 16x3x3	Conv 32x3x3	
			Conv 32x3x3	
			Conv 32x3x3	
MaxPool 4x4 ($s = 2$)	MaxPool 2x2	MaxPool 2x2	MaxPool 2x2	
Conv 16x3x3	Conv 16x3x3	Conv 32x3x3	Conv 48x3x3	
Conv 16x3x3	Conv 16x3x3	Conv 32x3x3	Conv 48x3x3	
		Conv 32x3x3	Conv 48x3x3	
			Conv 48x3x3	
			Conv 48x3x3	
MaxPool 4x4 ($s = 2$)	MaxPool 2x2	MaxPool 2x2	MaxPool 2x2	
Conv 12x3x3	Conv 32x3x3	Conv 48x3x3	Conv 64x3x3	
Conv 12x3x3	Conv 32x3x3	Conv 48x3x3	Conv 64x3x3	
		Conv 64x3x3	Conv 96x3x3	
			Conv 96x3x3	
			Conv 96x3x3	
MaxPool 2x2	MaxPool 8x8	MaxPool 8x8	MaxPool 8x8	
FC-10	FC-500	FC-500	FC-500	
	FC-10	FC-10	FC-10	

Caltech Convolutional Networks

EnKF

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

Numerics

	CNN-MNIST	CNN-1	CNN-2	CNN-3
SGD	0.9878	n/a	n/a	n/a
MSGD	0.9880	0.9150	0.9324	0.9414
EKI(R)	0.9912	0.9249	0.9353	0.9299

Figure: Comparison of the test accuracies of SGD and EKI(R) on four convolutional neural networks. SGD(M) refers to momentum SGD. CNN-MNIST is trained on the MNIST data set, while CNN-(1,2,3) are trained on the SVHN data set.

Caltech Recurrent Network (Classification)

Figure: Two-layer RNN on MNIST

Caltech Recurrent Network (Regression)

Figure: Temps

Figure: Sunspots

	Melbourne Temperatures		Zürich Sunspots	
	First	Final	First	Final
OGD	2.653×10^{-2}	$8.954 imes10^{-3}$	$4.939 imes10^{-2}$	$6.480 imes10^{-3}$
EKI	$8.086 imes10^{-3}$	$7.448 imes10^{-3}$	$8.671 imes 10^{-3}$	$6.006 imes10^{-3}$

Caltech LSTM (Batched Online Regression)

 $\mathcal{O}(10^5)$ reduction in the number of examples needed.

Caltech Conclusion

EnKF

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

- Machine learning as inverse/filtering problem
- EKI as a minimization scheme/natural gradient decent
- Generalizations to original method
- Numerics show promise as alternative for:
 - SGD
 - OGD
 - BPTT
- Future directions:
 - Parallelize method/State-of-the-art FFN(s)
 - State-of-the-art RNN(s)
 - Ensemble for model reduction/UQ
 - Non-differentiable models
 - Non-differentiable loss/reinforcement learning

Caltech References I

EnKF

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

- Bertozzi L. A., Flenner A. Diffuse Interface Models on Graphs for Classification of High Dimensional Data. *Multiscale Model. Simul.* 10(3). pp. 1090–1118. 2012.
- Bertozzi L. A., Luo X., Stuart M. A., Zygalakis C. K. Uncertainty Qunatification in the Classification of High Dimensional Data. *Preprint.* arXiv:1703.08816. 2017.
- Kantas N., Luo X., Beskos A., Jasra A. Sequential Monte Carlo methods for high-dimensional inverse problems. *SIAM/ASA Journal on Uncertainty Quantification*, 2. pp. 464-489. 2014.
- Iglesias M., Law K., Stuart M. A. Ensemble Kalman methods for inverse problems. *Inverse Problems*, 29. p. 045001. 2013.
- Schillings C., Stuart M. A. Analysis of the ensemble Kalman filter for inverse problems. *SIAM J Numerical Analysis*, 55(3). pp. 1264-1290. 2017.

Caltech References II

EnKF

Kovachki & Stuart

Invese Problems

Ensemble Kalman Inversion

- Amari S. Natural Gradient Works Efficiently in Learning. *Neural Computation*, 10. pp. 251–276. 1998.
- Ollivier Y. The Extended Kalman Filter is a Natural Gradient Descent in Trajectory Space. *CoRR*, 1901.00696. 2019.