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Computational Chemistry & Material Science

Schrodinger equation
HY(ry,ra,...,ry) = EV(ry,ro,...,ryN)

Electrocatalytic water splitting

Source: KTH

Source: IMDEA Materials Institute



Energy Computation
Energy Computation Cost

Post-Hartree-Fock methods:

Hartree-

Coulomb & exc 2 minutes




Correlation Energy Computation

Post-Hartree-Fock methods:

Hartreejock
Coulomb/&' e3<change energy

SV

Chemical accuracy: 0.1 to 2 mH;
not satisfied by HF.

Hence, the need for expensive
post-HF methods.

Post-HF methods estimate
correlation energy:
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Data-driven Approach

HF Data

(orbital features) >

gML
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Gaussian Process
Regression

Prediction on different H,O geometries Prediction on different molecules
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Predict on 7000 organic molecules with
at least 7 heavy atoms
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Data-driven Approach

Our goal: scale to billions of molecules.
Approaches:
e Scalability & Transferability

 |ssue:GPR is constrained by memory and time
 Approach: utilize clusters & their local linearity
 Leverage Multi-fidelity Data

e |Issue: different data volume based on fidelities

 Approach: learn residual model between fidelities



Key Observation
Sigma-bond Orbital
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Key Observation
Sigma-bond Orbital
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Sigma-bond Orbital
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* Smooth across molecules
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Pair Energy, €44

(Output)
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 Featurescluster
* Locallylinear
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Clustering

* Pairs have different chemical properties
* Sigma bond, lone pairs
* Learning specialized models likely beneficial

* Reduce computational resource demand
e Partition large datasets into smaller ones
* Enable parallel training and large scale-up factor

* Learn connections among molecules
* Inspect clusters to gain insights



Regression Clustering

k
Obijective: argmlnz {ﬂjl yl}leS)
Sl) Sk J 1
Cost: c{ziyihies,) = > 1fi(m) —ul

€S

Regressor: f; = OLS solution of {z, yl}lesj

Solution with greedy algorithm:
lterate until converged:
Sj = {l :argmin | f(21) —uil® = J}
ned{l,...,k}

f; = OLS solution of {z;,y; }ics,

Spath, H. (1979)
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Regression Clustering
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Regression Clustering

13



Regression Clustering
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Regression Clustering
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Regression Clustering
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Regression Clustering
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Training Process

- {ﬁbk}ij, €ij

(Regression clustering)

(Local regression)

e({or}"”
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Predicting

- { i}

(Classifier) —

(Local regression models)

e({on}) ~ €ij
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QM7B - Training Molecules
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QM7B - Training Molecules
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QM7B - Training Molecules
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QM7B - Cost
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QM7B - Cost
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Method Overview

* Advantages:
e Cheap to train/store/predict
 Parallelizable
* Can utilize big data
* Chemically interpretable
* Well-understood UQ

* Disadvantages:
* More data to be chemically accurate (w/ linearregressors)
 Dependent on the quality of the classifier
* Not smooth at cluster boundaries (w/ current implementation)
* Sensitive to initialization (local minima)
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Ongoing Next Steps

* Better regressors

e Capture non-linearity
e Smooth cluster transitions

w
2

» Better classifier
* Deep networks
e Bayesian consensus
e Cluster combinations
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Multi-fidelity Hierarchy

TN

Complexity
& accuracy

O(N!) Exact

O(N") ccsp(T)
o) [ oo |1
O(N?®) MP2
O(NY) Hartree-Fock

(HF)

HF 1 min 4 min
MP2 1 hour 20 hours
CCSD 5 hours 9 days

CCSD(T) 1 day 3 years

Impossible to scale!
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Leverage Multi-fidelity Data

* Data volume decreases as complexity increases.

e Can we bootstrap a prediction model for high-

fidelity data (e.g., CCSD(T)) from low-fidelity data
(e.g. MP2)?

* "Generating" more high-fidelity data to train a
more accurate high-fidelity model.
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Mathematical Formulation

Learn direct mapping from HF features to high-
fidelity data:

5 = hiah
minger Y- (f(z:) — €92

g==1f

Learn a residual model between low and high-
fidelity data:

¥ — Ehigh - Eiow

n

miﬂg&}f 2(9(-’1&') = 51')2
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"Generate" High-fidelity Data

High-fidelity — 5 q
Low-fidelity — D f

HF features

Q: can we train a more accurate high-
fidelity model with the generated data?
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Cost (in units of a single low-fidelity computation)

Results: Chemical Accuracy H
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Testing on 4200 new
geometries.

—— Multi-fidelity
——=- High-fidelity only, optimal

T
20 30 40 50
# of high-fidelity geometries

For a fixed number of high-fidelity geometries,

determine the computational cost upon

increasing the number of low-fidelity

calculationsto achieve a chemical accuracy of 31
0.5 mH.



MAE [mH]

Results: Varying Costs H

—— Multi-fidelity, # of high-fidelity geos = 10 C
—— High-fidelity only / \
255 @
| H H
2.0 - . T
cost(high-fidelity) =
20 * cost(low-fidelity)
1.5 - Testing on 4200 new
geometries.
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T T T T
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Cost (in units of a single low-fidelity computation)

Graduallyincrease low-fidelity data and the multi-
fidelity model achieves lower error at lower cost.
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Future Directions

* Beyond two fidelities: crpest
* Go up towards a good approximation for exact | &
computation.
* What is the optimal way to define residuals? o
+ CCSD(T) = MP2 + (CCSD(T) - MP2) e
(V%)
(N7)

ccsD(T)

CCsD

« CCSD(T) = CCSD + (CCST(T) - CCSD) )
* CCSD(T) = MP2 + (CCSD — MP2) + (CCSD(T) - CCSD)

Hartree-Fock
(HF)

* Basis set hierarchy:
* Varying the granularity of discretization to reduce costs

of generating molecular orbital features. -

* Widely applicable: S S

* Any application that exhibits hierarchy of different
quality data can adopt our methodology.
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Conclusion

Our goals:

e Scalability & Transferability \/

e Scaleto 10X data
e Transfer betterto new molecules, 30% error reduction

e Reduce training computation cost by a factor of 1000

e Leverage Multi-fidelity Data \/

e Chemically accurate high-fidelity model at 50% cost
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