A Data-driven Future for Quantum Chemistry

CMS 273: Miller/Bhattacharya Final Presentation

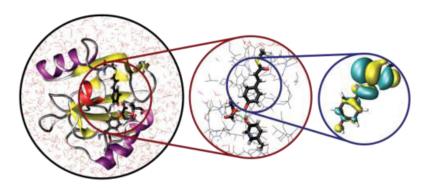
> Prof. Thomas Miller III Prof. Kaushik Bhattacharya

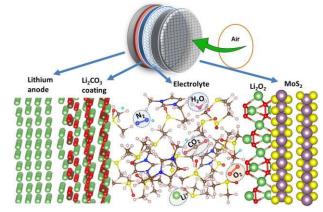
> > Ph.D. Matt Welborn

Grad students (Science/Engineering): Sherry Cheng, Ying Shi Teh

Grad students(CMS): Jialin Song, Nikola Kovachki, Dmitry Burov

Computational Chemistry & Material Science

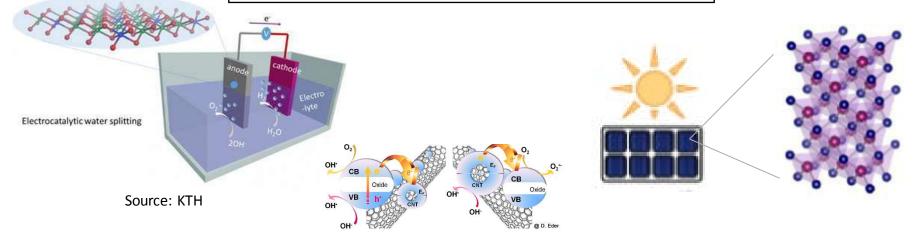




Source: Asadi et al., Nature 555 (2018)

Schrödinger equation

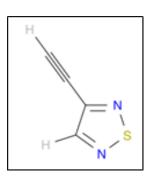




Source: IMDEA Materials Institute

Energy Computation Energy Computation Cost

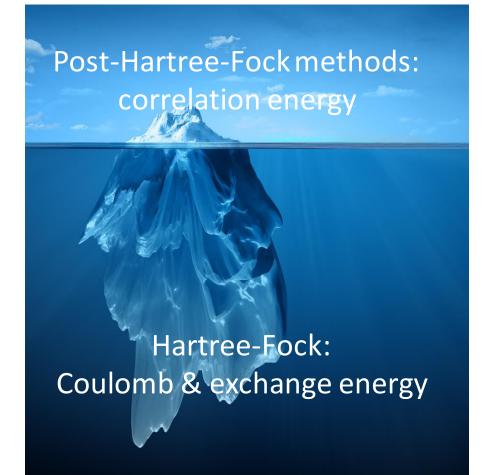
Post-Hartree-Fock methods: correlation energy



26 hours

Hartree-Fock: Coulomb & exchange energy

Correlation Energy Computation



Chemical accuracy: 0.1 to 2 mH; not satisfied by HF.

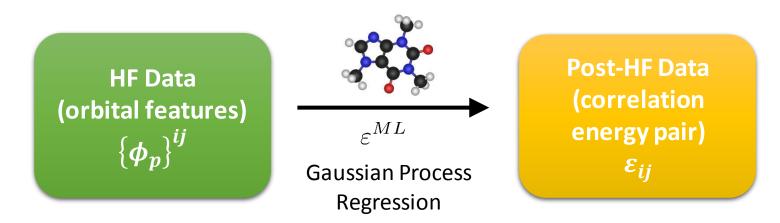
Hence, the need for expensive post-HF methods.

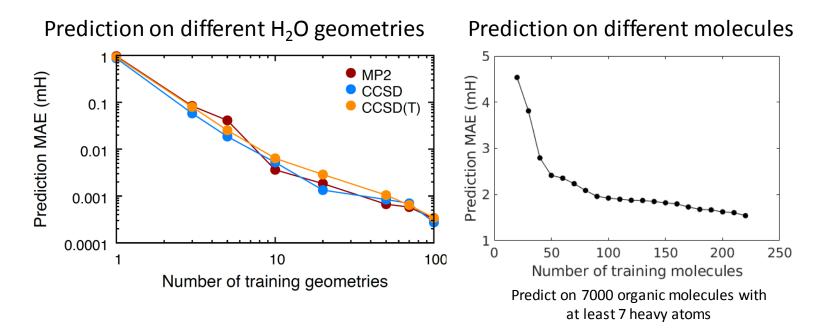
Post-HF methods estimate correlation energy:

$$E_c = \sum_{ij}^{occ} \varepsilon_{ij}$$

$$\varepsilon_{ij} = \varepsilon \left[\{\phi_p\}^{ij} \right]$$

Data-driven Approach





Cheng, Welborn and Miller III, ArXiv (2019)

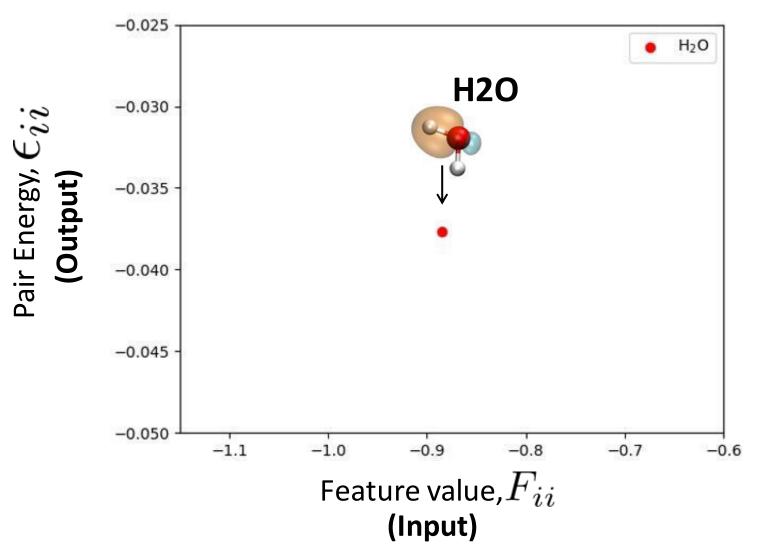
Data-driven Approach

Our goal: scale to billions of molecules.

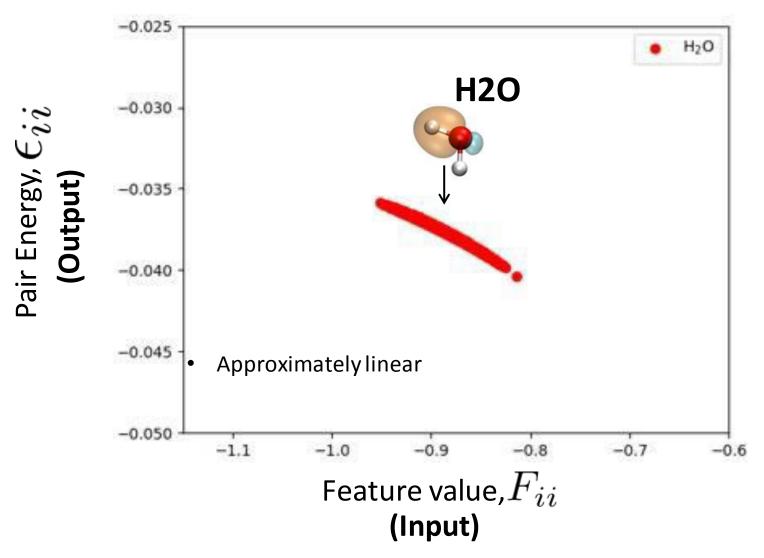
Approaches:

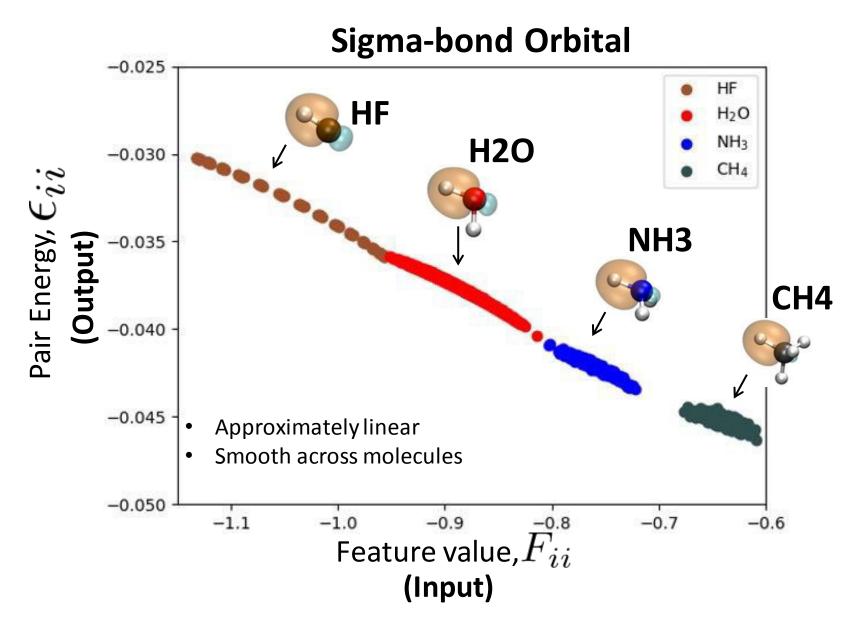
- Scalability & Transferability
 - Issue: GPR is constrained by memory and time
 - Approach: utilize clusters & their local linearity
- Leverage Multi-fidelity Data
 - Issue: different data volume based on fidelities
 - Approach: learn residual model between fidelities

Sigma-bond Orbital

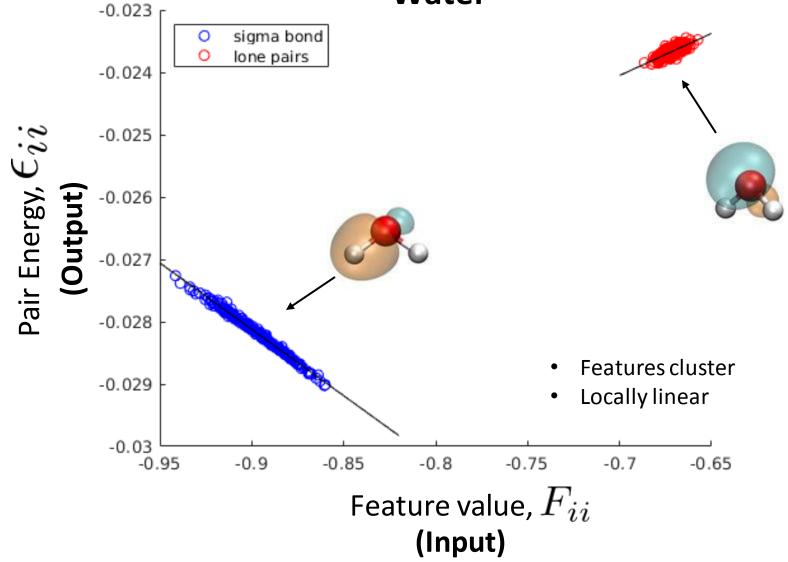


Sigma-bond Orbital





Water



Clustering

- Pairs have different chemical properties
 - Sigma bond, lone pairs
 - Learning specialized models likely beneficial
- Reduce computational resource demand
 - Partition large datasets into smaller ones
 - Enable parallel training and large scale-up factor
- Learn connections among molecules
 - Inspect clusters to gain insights

Objective:
$$\underset{S_1,...,S_k}{\operatorname{arg\,min}} \sum_{j=1}^k c(\{x_l, y_l\}_{l \in S_j})$$

Cost:
$$c(\{x_l, y_l\}_{l \in S_j}) = \sum_{l \in S_j} |f_j(x_l) - y_l|$$

Regressor:
$$f_j = \text{OLS solution of } \{x_l, y_l\}_{l \in S_j}$$

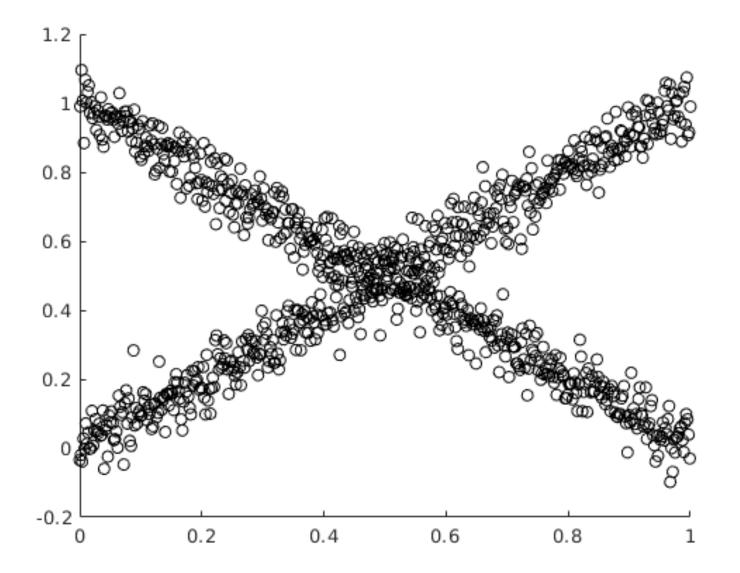
Solution with greedy algorithm:

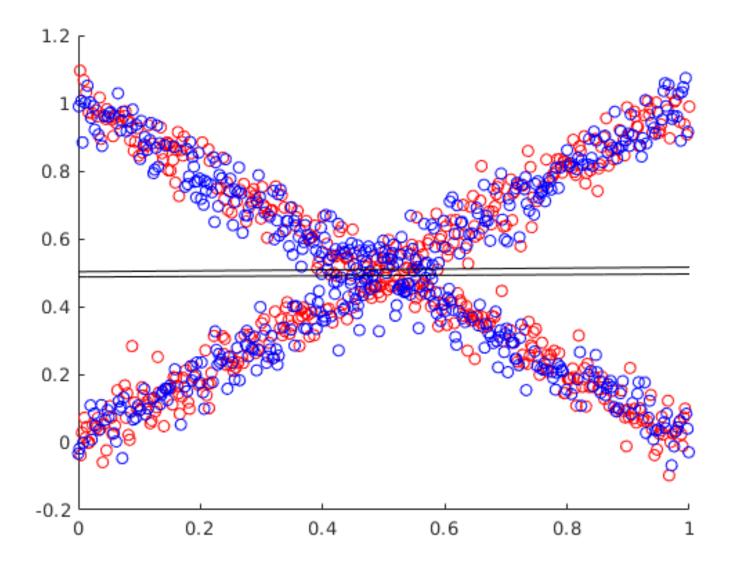
Iterate until converged:

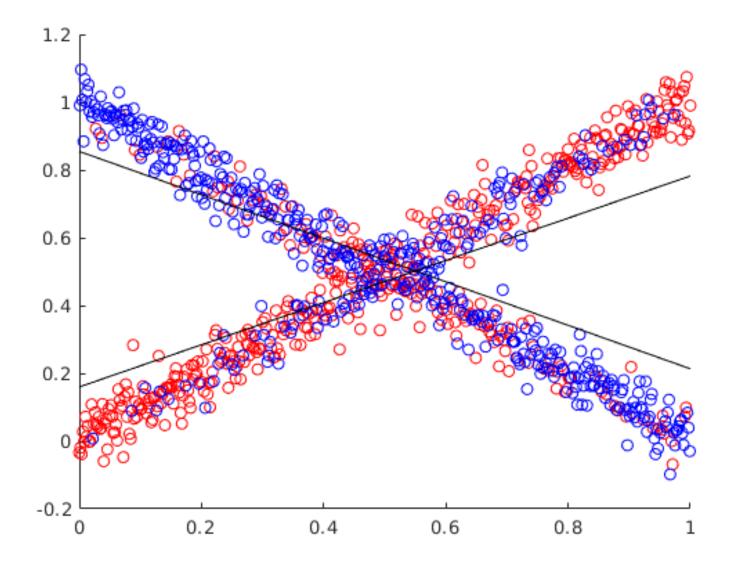
$$S_j = \left\{ l : \underset{n \in \{1, \dots, k\}}{\operatorname{arg\,min}} |f_n(x_l) - y_l|^2 = j \right\}$$

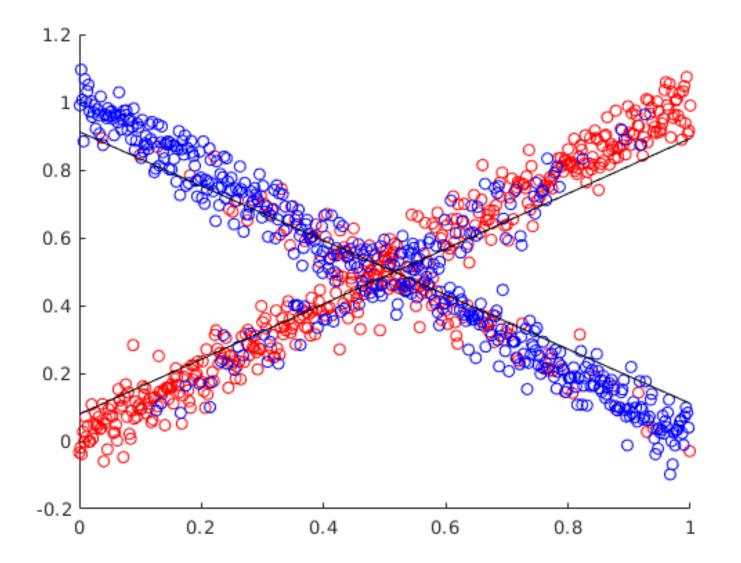
$$f_j = \text{OLS solution of } \{x_l, y_l\}_{l \in S_j}$$

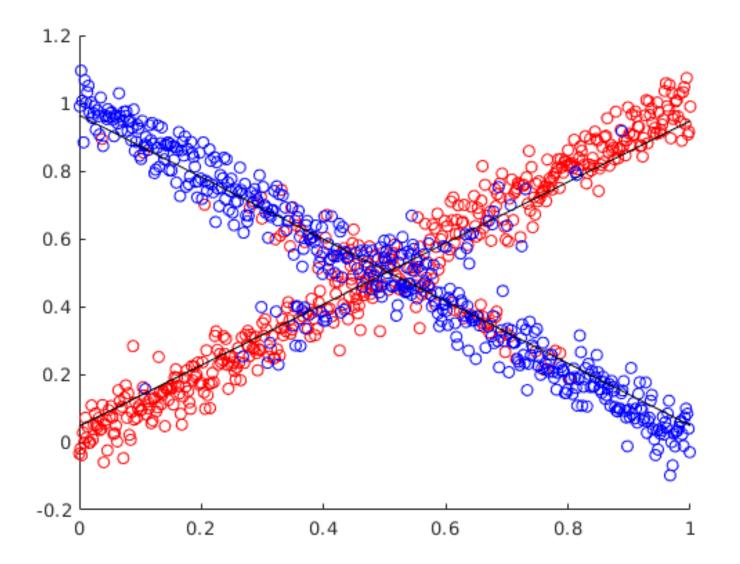
2

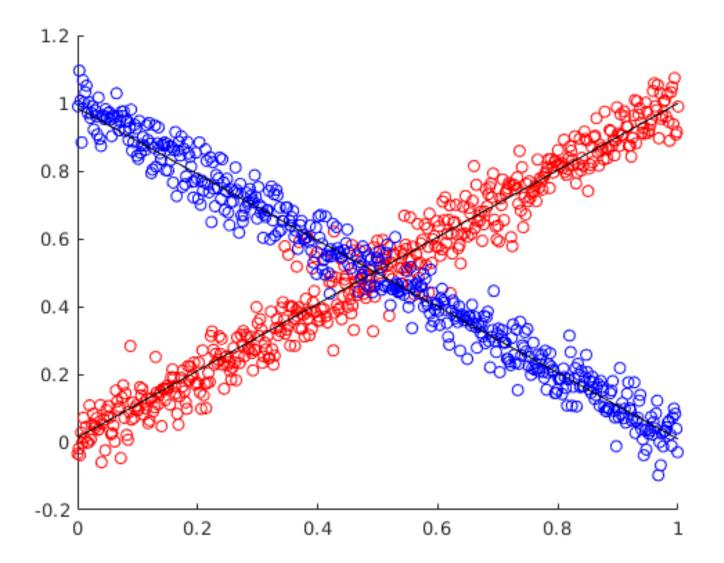




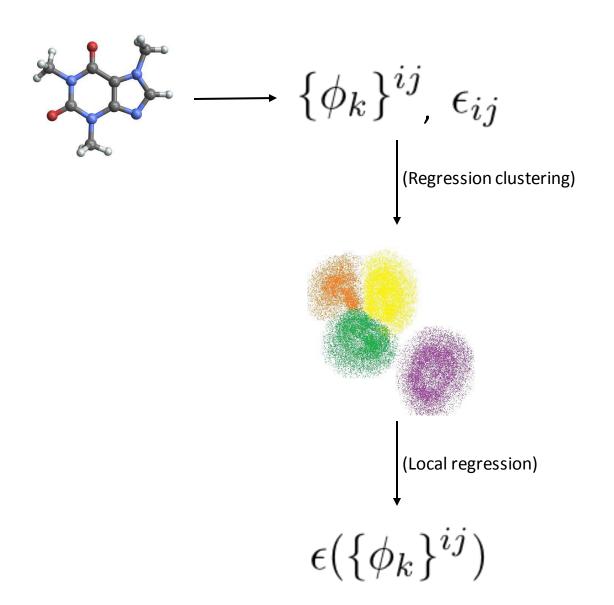




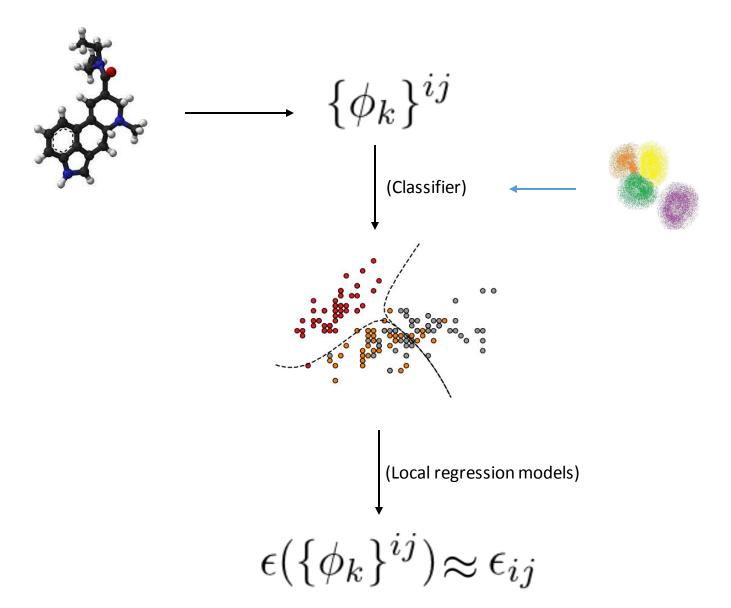




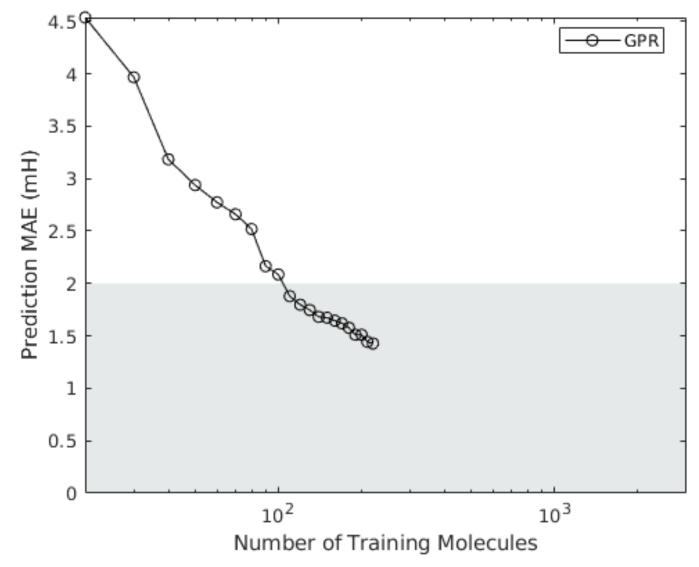
Training Process



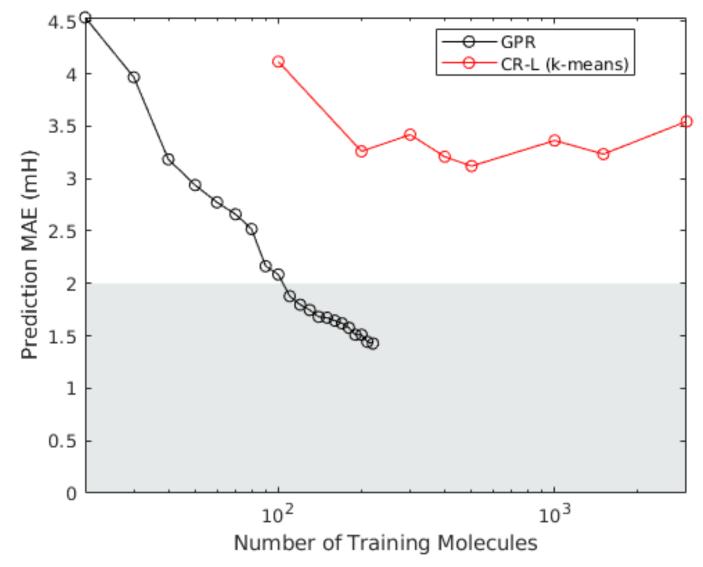
Predicting



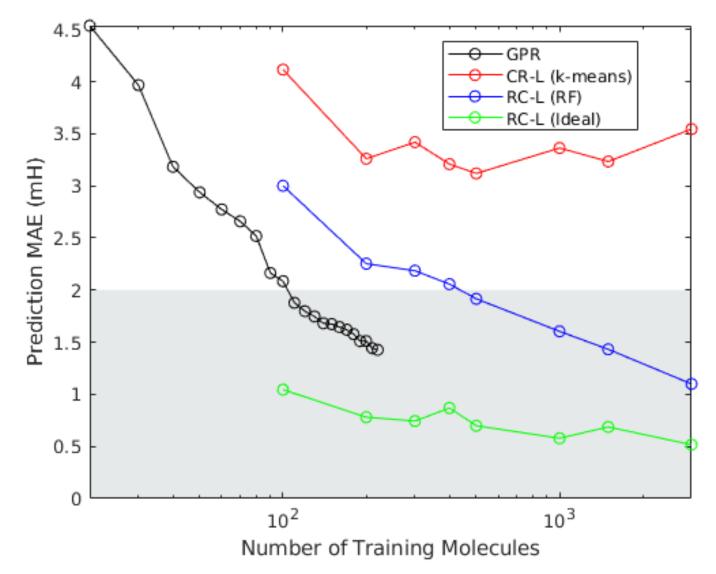
QM7B – Training Molecules



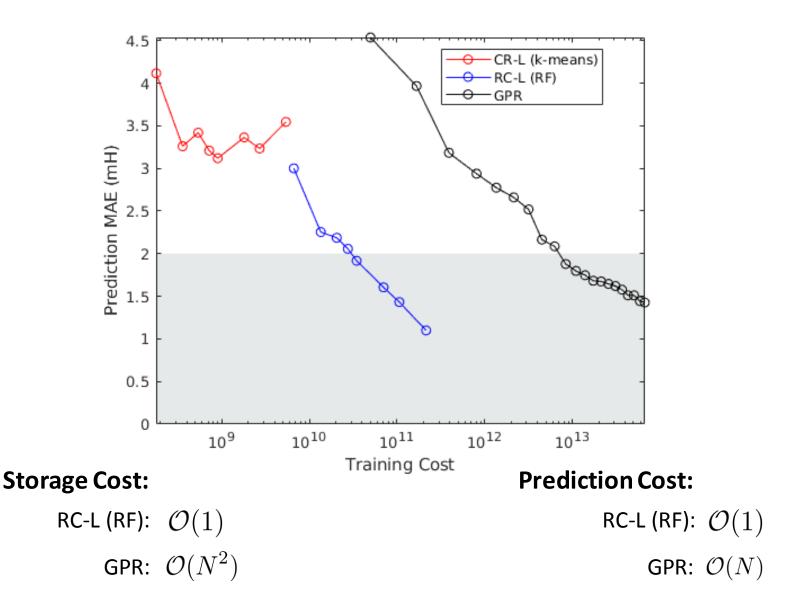
QM7B – Training Molecules



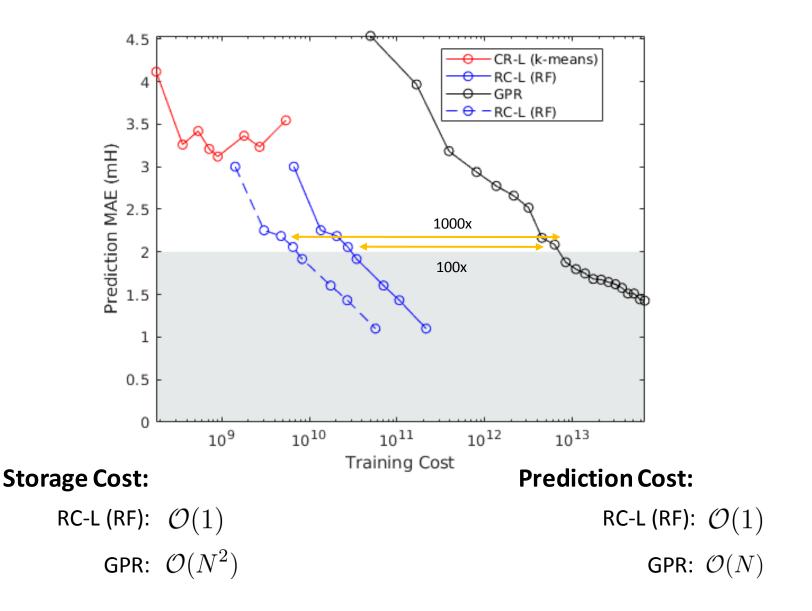
QM7B – Training Molecules



QM7B – Cost



QM7B – Cost



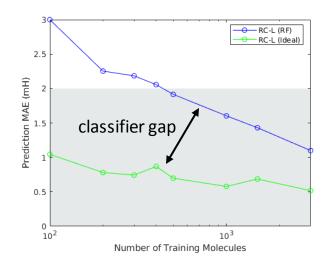
Method Overview

- Advantages:
 - Cheap to train/store/predict
 - Parallelizable
 - Can utilize big data
 - Chemically interpretable
 - Well-understood UQ
- Disadvantages:
 - More data to be chemically accurate (w/ linear regressors)
 - Dependent on the quality of the classifier
 - Not smooth at cluster boundaries (w/ current implementation)
 - Sensitive to initialization (local minima)

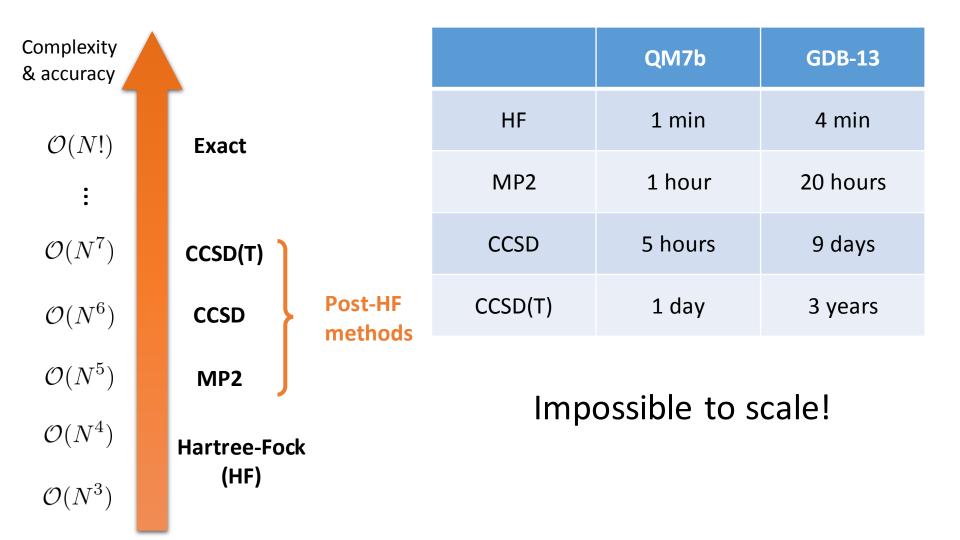
Ongoing Next Steps

- Better regressors
 - Capture non-linearity
 - Smooth cluster transitions

- Better classifier
 - Deep networks
 - Bayesian consensus
 - Cluster combinations



Multi-fidelity Hierarchy



Leverage Multi-fidelity Data

- Data volume decreases as complexity increases.
- Can we bootstrap a prediction model for highfidelity data (e.g., CCSD(T)) from low-fidelity data (e.g. MP2)?
- "Generating" more high-fidelity data to train a more accurate high-fidelity model.

Mathematical Formulation

Learn direct mapping from HF features to highfidelity data:

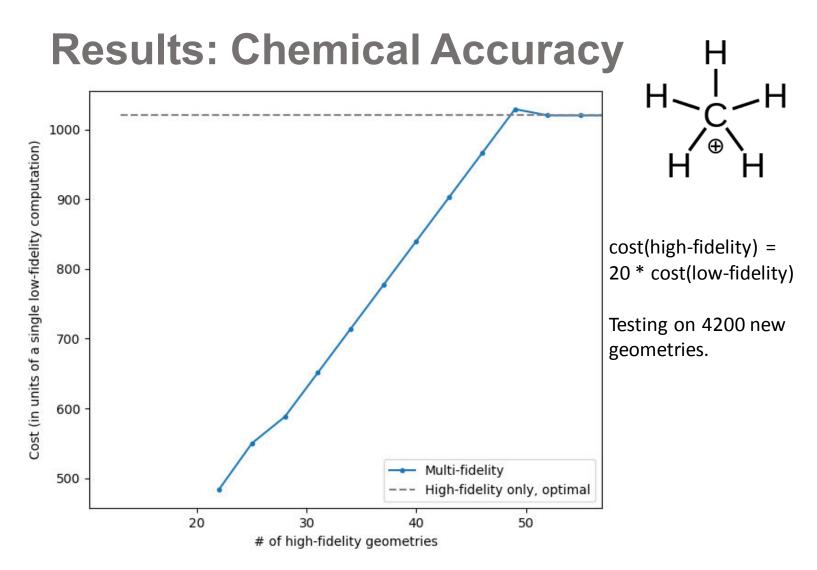
$$\min_{f \in \mathcal{F}} \sum_{i=1}^{n} (f(x_i) - \epsilon_i^{high})^2$$

Learn a residual model between low and highfidelity data:

$$\delta = \epsilon^{high} - \epsilon^{low}$$
$$\min_{g \in \mathcal{F}} \sum_{i=1}^{n} (g(x_i) - \delta_i)^2$$

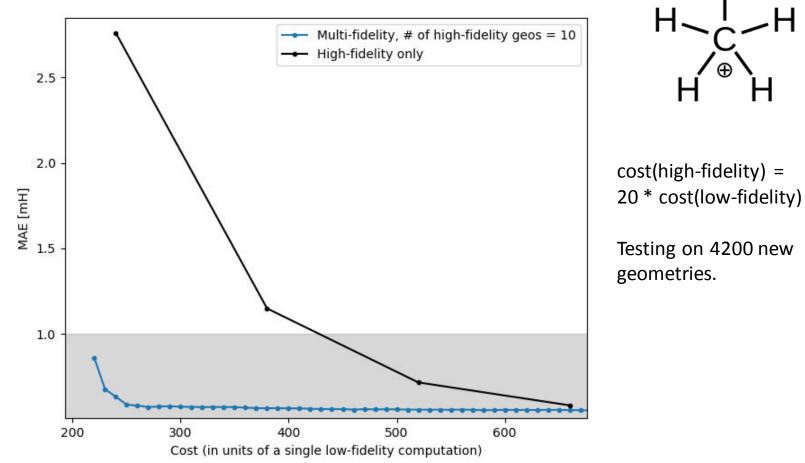
"Generate" High-fidelity Data

Q: can we train a more accurate highfidelity model with the generated data?



For a fixed number of high-fidelity geometries, determine the computational cost upon increasing the number of low-fidelity calculations to achieve a chemical accuracy of 0.5 mH.

Results: Varying Costs



Gradually increase low-fidelity data and the multifidelity model achieves lower error at lower cost.

Future Directions

- Beyond two fidelities:
 - Go up towards a good approximation for exact computation.
 - What is the optimal way to define residuals?
 - CCSD(T) = MP2 + (CCSD(T) MP2)
 - CCSD(T) = CCSD + (CCST(T) CCSD)
 - CCSD(T) = MP2 + (CCSD MP2) + (CCSD(T) CCSD)
- Basis set hierarchy:
 - Varying the granularity of discretization to reduce costs of generating molecular orbital features.
 QM7b GDB-13
- Widely applicable:
 - Any application that exhibits hierarchy of different quality data can adopt our methodology.

HF

1 min

4 min

Conclusion

Our goals:

- Scalability & Transferability
 - Scale to 10X data
 - Transfer better to new molecules, 30% error reduction
 - Reduce training computation cost by a factor of 1000
- Leverage Multi-fidelity Data
 - Chemically accurate high-fidelity model at 50% cost