
A Data-driven Future for 
Quantum Chemistry 

Prof. Thomas Miller III 

Prof. Kaushik Bhattacharya 

Ph.D. Matt Welborn 

Grad students (Science/Engineering): Sherry Cheng, Ying Shi Teh 

Grad students(CMS): Jialin Song, Nikola Kovachki, Dmitry Burov 

CMS 273: Miller/Bhattacharya 

Final Presentation 



1 

Source: KTH 

Schrödinger equation 

Source:  IMDEA Materials Institute 

Source: Asadi et al., Nature 555 (2018) 

Computational Chemistry & Material Science 



Energy Computation 
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Post-Hartree-Fock methods:  

correlation energy 

Hartree-Fock: 

Coulomb & exchange energy 

Energy Computation Cost 

2 minutes 

26 hours 



Correlation Energy Computation 
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Chemical accuracy: 0.1 to 2 mH; 

not satisfied by HF. 

 

Hence, the need for expensive 

post-HF methods. 

 

Post-HF methods estimate 

correlation energy: 

Hartree-Fock: 

Coulomb & exchange energy 

Post-Hartree-Fock methods: 

correlation energy 



Data-driven Approach 
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HF Data 

(orbital features) 𝝓𝒑 𝒊𝒋
 

Post-HF Data 

(correlation 

energy pair) 𝜺𝒊𝒋 Gaussian Process 

Regression 

Cheng, Welborn and Miller III, ArXiv (2019) 

Prediction on different H2O geometries  Prediction on different molecules 

Predict on 7000 organic molecules with 

at least 7 heavy atoms 



Data-driven Approach 
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Our goal: scale to billions of molecules. 

Approaches: 

• Scalability & Transferability 

• Issue: GPR is constrained by memory and time 

• Approach: utilize clusters & their local linearity 

• Leverage Multi-fidelity Data 

• Issue: different data volume based on fidelities 

• Approach: learn residual model between fidelities 

 



Key Observation 
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Feature value,  
(Input) 

H2O 

Sigma-bond Orbital 



Key Observation 
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Feature value,  
(Input) 

Sigma-bond Orbital 

H2O 

• Approximately linear 



Key Observation 
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HF 
H2O 

NH3 

CH4 
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Feature value,  
(Input) 

Sigma-bond Orbital 

• Approximately linear 

• Smooth across molecules  



Key Observation 

9 

Water 
(O

u
tp

u
t)

 

(Input) 

P
a

ir
 E

n
e

rg
y,

 

Feature value,  

• Features cluster 

• Locally linear 



Clustering 

• Pairs have different chemical properties 

• Sigma bond, lone pairs 

• Learning specialized models likely beneficial 

 

• Reduce computational resource demand 

• Partition large datasets into smaller ones 

• Enable parallel training and large scale-up factor 

 

• Learn connections among molecules 

• Inspect clusters to gain insights 
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Regression Clustering 
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Objective: 

Cost:

  

Regressor: 

Solution with greedy algorithm:  

Iterate until converged: 

Spath, H. (1979) 



Regression Clustering 
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Regression Clustering 

13 



Regression Clustering 
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Regression Clustering 
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Regression Clustering 
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Regression Clustering 
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Training Process 

18 

, 

(Regression clustering) 

(Local regression) 



Predicting 
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(Classifier) 

(Local regression models) 



QM7B – Training Molecules 
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Cheng, Welborn and Miller III, ArXiv (2019) 



QM7B – Training Molecules 
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Cheng, Welborn and Miller III, ArXiv (2019) 



QM7B – Training Molecules 
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Cheng, Welborn and Miller III, ArXiv (2019) 



QM7B – Cost 
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Storage Cost: 

RC-L (RF): 

GPR: 

Prediction Cost: 

RC-L (RF): 

GPR: 



QM7B – Cost 
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Storage Cost: 

RC-L (RF): 

GPR: 

Prediction Cost: 

RC-L (RF): 

GPR: 

100x 

1000x 



Method Overview 

• Advantages: 

• Cheap to train/store/predict 

• Parallelizable  

• Can utilize big data 

• Chemically interpretable  

• Well-understood UQ 

• Disadvantages: 

• More data to be chemically accurate (w/ linear regressors) 

• Dependent on the quality of the classifier 

• Not smooth at cluster boundaries (w/ current implementation) 

• Sensitive to initialization (local minima) 
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Ongoing Next Steps 
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• Better regressors 

• Capture non-linearity 

• Smooth cluster transitions 

 

 

• Better classifier 

• Deep networks 

• Bayesian consensus 

• Cluster combinations 

 

 

 

 

classifier gap  



Multi-fidelity Hierarchy 
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Hartree-Fock 

(HF) 

MP2 

CCSD 

CCSD(T) 

Exact 

…
 

Complexity 

& accuracy 

Post-HF 

methods 

QM7b  GDB-13 

HF 1 min 4 min 

MP2 1 hour 20 hours 

CCSD 5 hours 9 days 

CCSD(T) 1 day 3 years 

Impossible to scale! 



Leverage Multi-fidelity Data 

• Data volume decreases as complexity increases. 

 

• Can we bootstrap a prediction model for high-
fidelity data (e.g., CCSD(T)) from low-fidelity data 
(e.g. MP2)? 

 

• "Generating" more high-fidelity data to train a 
more accurate high-fidelity model. 
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Mathematical Formulation 
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Learn direct mapping from HF features to high-

fidelity data: 

Learn a residual model between low and high-

fidelity data: 



"Generate" High-fidelity Data 
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High-fidelity 

Low-fidelity 

HF features 

Q: can we train a more accurate high-

fidelity model with the generated data? 



Results: Chemical Accuracy 
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cost(high-fidelity) =  

20 * cost(low-fidelity) 

 

Testing on 4200 new 

geometries. 

 

For a fixed number of high-fidelity geometries, 

determine the computational cost upon 

increasing the number of low-fidelity 

calculations to achieve a chemical accuracy of 

0.5 mH.  



Results: Varying Costs  
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Gradually increase low-fidelity data and the multi-

fidelity model achieves lower error at lower cost. 

cost(high-fidelity) =  

20 * cost(low-fidelity) 

 

Testing on 4200 new 

geometries. 

 



Future Directions 

• Beyond two fidelities: 

• Go up towards a good approximation for exact 
computation. 

• What is the optimal way to define residuals? 

• CCSD(T) = MP2 + (CCSD(T) - MP2) 

• CCSD(T) = CCSD + (CCST(T) - CCSD) 

• CCSD(T) = MP2 + (CCSD – MP2) + (CCSD(T) - CCSD) 

• Basis set hierarchy: 

• Varying the granularity of discretization to reduce costs 
of generating molecular orbital features. 

• Widely applicable: 

• Any application that exhibits hierarchy of different 
quality data can adopt our methodology. 
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QM7b GDB-13 

HF 1 min 4 min 



Conclusion 

Our goals: 

• Scalability & Transferability 

• Scale to 10X data 

• Transfer better to new molecules, 30% error reduction 

• Reduce training computation cost by a factor of 1000 

• Leverage Multi-fidelity Data 

• Chemically accurate high-fidelity model at 50% cost 
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