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Generative Modeling

Generative Models in the Wild

Figure: DALL-E 2 Figure: Imagen
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Generative Modeling

Generative Models in Scientific Computing

Figure:
Inverse
Problems

Figure: UQ Figure: Chaos
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Generative Modeling

Problem Formulation

Unconditional

Goal: sample measure µ supported on U

Given: data samples {uj}Nj=1
i .i .d .∼ µ

Map: Ψ : X → U , Ψ]η = µ, η measure on X

Conditional

Goal: sample measure µ(·|y) for every y ∈ Y

Given: data samples {(uj , yj)}Nj=1
i .i .d .∼ µ

Map: Ψ : X × Y → U , Ψ(·, y)]η = µ(·|y)
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Generative Modeling

Current Approaches

Deterministic

Generative Adversarial Networks

Normalizing Flows

Triangular Maps

Variational Autoencoders

Diffusion Models

Stochastic

MCMC methods

Stochastic Interpolants

Diffusion Models
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Score Matching in Finite Dimensions
(Song, Y., Ermon, S., 2019)
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Score Matching in Finite Dimensions

Langevin Dynamics

Assumptions

X = U = Rd , µ has density p ∈ C 1(Rd)

Langevin Equation

dxt = ∇x log p(xt) dt +
√

2dzt

x0 ∼ N(0, I ) := η

zt is a standard Wiener process

Map

ΨT (x0) := xT , T � 0

(ΨT )]η → µ as T →∞
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Score Matching in Finite Dimensions

The Score and Denoising

Perturbation of the Score

νσ = µ ∗ N(0, σ2I ), σ > 0

νσ has density pσ ∈ C∞(Rd)

Denoising Score Matching

σ2∇ log pσ = arg min
sσ

Eξ∼N(0,σ2I )Eu∼µ
∣∣ξ + sσ(u + ξ)

∣∣2
Map

ΨT ,σ(x0) := x
(σ)
T , T � 0, σ � 1

(ΨT ,σ)]η → µ as T →∞, and σ → 0
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Score Matching in Finite Dimensions

Multiple Noise Scales

Langevin Equations

Pick : 0 < σ1 < σ2 < · · · < σJ

dx
(σj )
t = σ2

j ∇x log pσj
(
x

(σj )
t

)
dt +

√
2dz

(σj )
t

x
(σj )
0 ∼ L

(
x

(σj+1)
Tj+1

)
, j = J − 1, . . . , 1, xσJ0 ∼ N(0, σ2

J I )

z
(σj )
t is a σ2

j −Wiener process

Map

Ψ := ΨT1,σ1 ◦ · · · ◦ΨTJ ,σJ
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Score Matching in Finite Dimensions

Forward and Reverse SDEs

Key Idea

Allow σ to vary continuously

Forward Process

dut =
√
tdzt , u0 ∼ µ

Reverse Process

SDE: dxt = −t∇xpt(xt) dt +
√
tdz̄t , x(T ) ∼ L(uT )

ODE: dxt = −t∇xpt(xt) dt, x(T ) ∼ L(uT )
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Score Matching in Infinite Dimensions

Score Matching in Infinite Dimensions
(Lim, J., Kovachki, N.B., Baptista, R., et. al., 2023)
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Score Matching in Infinite Dimensions

Operator Learning

Key Idea

Treat Ψ as a map between function spaces

Find generalization yielding tractable approximation

Benefits for Generative Modeling

Mathematical understanding

Scale to larger resolutions

Consistent error at any resolution

Consistent sampling cost at any resolution
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Score Matching in Infinite Dimensions

Gaussian Densities

Assumptions

X = U = H infinite-dimensional separable Hilbert space

µσ = N(0, σ2C ) centered Gaussian measure on H

µ(H0) = 1, with H0 the Cameron-Martin space of µσ

Perturbation

νσ = µ ∗ µσ
νσ ∼ µσ equivalent in the sense of measures

Convergence

Wp(νσ, µ) ≤ K (p,C )σ
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Score Matching in Infinite Dimensions

The Score Operator

Density

dνσ
dµσ

(w) = exp(Φσ(w))

The Score

DH0Φσ = DH0 log
dνσ
dµσ

DH0Φσ : H → H∗0 , assume Fréchet differentiability

Denoising Score Matching

σ2CDH0Φσ = arg min
sσ

Eξ∼µσEu∼µ
∥∥σ−1C−1/2

(
u − sσ(u + ξ)

)∥∥2

H
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Score Matching in Infinite Dimensions

Preconditioned Langevin Dynamics

Preconditioned Langevin Equation

dxt = −xt + σ2CDH0Φσ(xt) dt +
√

2dz
(σ)
t

z
(σ)
t is a σ2C -Wiener process

xt has invariant measure νσ

Reparametrization

Optimize: arg min
θ

Eξ∼µσEu∼µ‖ξ + Fθ(u + ξ)‖2
H

Discretize: dxt = Fθ(xt) dt +
√

2dz
(σ)
t
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Score Matching in Infinite Dimensions

Regularity Gap

Assumptions

H = L̇2(Td), µ = N(0,C1), µσ = N(0, σ2C2)

C1 = (−∆)−α1 , C2 = (−∆)−α2 , α1, α2 > d/2

Regularity Gap

µ(H0) = 1 is satisfied iff α1 − α2 > d/2

Dissipative Dynamics

µ(H0) = 1 satisfied if µ is a pushforward under a smoothing map
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Score Matching in Infinite Dimensions

Smoothing Operators

Perturbation

νσ = (Aσ)]µ ∗ µσ, Aσ : H → H0

νσ ∼ µσ equivalent with no assumptions on µ

Idea: apply smoothing to data Aσ → I as σ → 0

Example

Aσ = eσ∆ solution operator for heat equation
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Numerical Examples

Mixture of Gaussian Fields

Using trace-class noise yields a resolution invariant map
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Numerical Examples

Super Resolution for Navier-Stokes

Super-resolution for NS preserves data statistics
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Numerical Examples

Super Resolution for MNIST

Figure: 64× 64 Figure: 128× 128 Figure: 256× 256
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Conclusion

Conclusion

This Talk

Infinite dimensional score matching

Operator learning + trace-class covariance

Learn consistently across resolutions

Future Directions

SDE formulation in infinite dimensions

Flow ODE in infinite dimensions

Bayesian inverse problems

Rates for convergence of approximation
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