Nikola B. Kovachki

NVIDIA

ICIAM 2023 Theoretical Foundations and Algorithmic Innovation in Operator Learning August 22nd

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline

1 Generative Modeling

- 2 Score Matching in Finite Dimensions
- **3** Score Matching in Infinite Dimensions

4 Numerical Examples

5 Conclusion

Generative Modeling

Generative Modeling

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Generative Models in the Wild

Figure: DALL-E 2

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Figure: Imagen

Generative Models in Scientific Computing

Figure: Inverse Problems Figure: UQ

Figure: Chaos

Problem Formulation

Unconditional

Goal: sample measure μ supported on \mathcal{U} Given: data samples $\{u_j\}_{j=1}^N \stackrel{i.i.d.}{\sim} \mu$ Map: $\Psi : \mathcal{X} \to \mathcal{U}, \ \Psi_{\sharp} \eta = \mu, \ \eta$ measure on \mathcal{X}

Conditional

Goal: sample measure $\mu(\cdot|y)$ for every $y \in \mathcal{Y}$ Given: data samples $\{(u_j, y_j)\}_{j=1}^N \stackrel{i.i.d.}{\sim} \mu$ Map: $\Psi : \mathcal{X} \times \mathcal{Y} \to \mathcal{U}, \ \Psi(\cdot, y)_{\sharp} \eta = \mu(\cdot|y)$

Current Approaches

Deterministic

- Generative Adversarial Networks
- Normalizing Flows
- Triangular Maps
- Variational Autoencoders
- Diffusion Models

Stochastic

- MCMC methods
- Stochastic Interpolants

・ ロ ト ・ 雪 ト ・ 画 ト ・ 日 ト

31

Diffusion Models

Score Matching in Finite Dimensions

Score Matching in Finite Dimensions

(Song, Y., Ermon, S., 2019)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Score Matching in Finite Dimensions

Langevin Dynamics

Assumptions

$$\mathcal{X} = \mathcal{U} = \mathbb{R}^d, \ \mu \text{ has density } p \in C^1(\mathbb{R}^d)$$

Langevin Equation

$$egin{aligned} &dx_t =
abla_x \log p(x_t) \ dt + \sqrt{2} dz_t \ &x_0 \sim N(0, I) \coloneqq \eta \ &z_t \ ext{is a standard Wiener process} \end{aligned}$$

Мар

$$\Psi_T(x_0) \coloneqq x_T, \ T \gg 0$$

 $(\Psi_T)_{\sharp} \eta
ightarrow \mu ext{ as } T
ightarrow \infty$

Score Matching in Finite Dimensions

The Score and Denoising

Perturbation of the Score

$$egin{aligned} &
u_\sigma = \mu * \textit{N}(0, \sigma^2\textit{I}), \ \sigma > 0 \ &
u_\sigma ext{ has density } p_\sigma \in \textit{C}^\infty(\mathbb{R}^d) \end{aligned}$$

Denoising Score Matching

$$\sigma^2 \nabla \log p_{\sigma} = \arg\min_{s_{\sigma}} \mathbb{E}_{\xi \sim N(0, \sigma^2 I)} \mathbb{E}_{u \sim \mu} |\xi + s_{\sigma}(u + \xi)|^2$$

Map

$$\begin{split} \Psi_{\mathcal{T},\sigma}(x_0) &\coloneqq x_{\mathcal{T}}^{(\sigma)}, \ \mathcal{T} \gg 0, \ \sigma \ll 1 \\ (\Psi_{\mathcal{T},\sigma})_{\sharp} \eta \to \mu \text{ as } \mathcal{T} \to \infty, \text{ and } \sigma \to 0 \end{split}$$

Score Matching in Finite Dimensions

Multiple Noise Scales

Langevin Equations

Pick :
$$0 < \sigma_1 < \sigma_2 < \dots < \sigma_J$$

 $dx_t^{(\sigma_j)} = \sigma_j^2 \nabla_x \log p_{\sigma_j}(x_t^{(\sigma_j)}) dt + \sqrt{2} dz_t^{(\sigma_j)}$
 $x_0^{(\sigma_j)} \sim \mathcal{L}(x_{T_{j+1}}^{(\sigma_{j+1})}), \ j = J - 1, \dots, 1, \ x_0^{\sigma_J} \sim N(0, \sigma_J^2 I)$
 $z_t^{(\sigma_j)}$ is a σ_j^2 – Wiener process

Map

$$\Psi := \Psi_{\mathcal{T}_1,\sigma_1} \circ \cdots \circ \Psi_{\mathcal{T}_J,\sigma_J}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Score Matching in Finite Dimensions

Forward and Reverse SDEs

Key Idea

Allow σ to vary continuously

Forward Process

$$du_t = \sqrt{t} dz_t, \ u_0 \sim \mu$$

Reverse Process

SDE:
$$dx_t = -t\nabla_x p_t(x_t) dt + \sqrt{t}d\bar{z}_t, \ x(T) \sim \mathcal{L}(u_T)$$

ODE: $dx_t = -t\nabla_x p_t(x_t) dt, \ x(T) \sim \mathcal{L}(u_T)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Score Matching in Infinite Dimensions

Score Matching in Infinite Dimensions

(Lim, J., Kovachki, N.B., Baptista, R., et. al., 2023)

Score Matching in Infinite Dimensions

Operator Learning

Key Idea

Treat Ψ as a map between function spaces Find generalization yielding tractable approximation

Benefits for Generative Modeling

Mathematical understanding

Scale to larger resolutions

Consistent error at any resolution

Consistent sampling cost at any resolution

Score Matching in Infinite Dimensions

Gaussian Densities

Assumptions

 $\mathcal{X} = \mathcal{U} = H$ infinite-dimensional separable Hilbert space $\mu_{\sigma} = N(0, \sigma^2 C)$ centered Gaussian measure on H $\mu(H_0) = 1$, with H_0 the Cameron-Martin space of μ_{σ}

Perturbation

 $u_{\sigma} = \mu * \mu_{\sigma}$ $u_{\sigma} \sim \mu_{\sigma}$ equivalent in the sense of measures

Convergence

$$W_p(\nu_\sigma,\mu) \leq K(p,C)\sigma$$

Score Matching in Infinite Dimensions

The Score Operator

Density

$$\frac{d\nu_{\sigma}}{d\mu_{\sigma}}(w) = \exp(\Phi_{\sigma}(w))$$

The Score

$$D_{H_0} \Phi_{\sigma} = D_{H_0} \log \frac{d\nu_{\sigma}}{d\mu_{\sigma}}$$

 $D_{H_0} \Phi_{\sigma} : H \to H_0^*$, assume Fréchet differentiability

Denoising Score Matching

$$\sigma^{2} CD_{H_{0}} \Phi_{\sigma} = \arg\min_{s_{\sigma}} \mathbb{E}_{\xi \sim \mu_{\sigma}} \mathbb{E}_{u \sim \mu} \left\| \sigma^{-1} C^{-1/2} \left(u - s_{\sigma} (u + \xi) \right) \right\|_{H}^{2}$$

の<()

Score Matching in Infinite Dimensions

Preconditioned Langevin Dynamics

Preconditioned Langevin Equation

$$dx_t = -x_t + \sigma^2 CD_{H_0} \Phi_{\sigma}(x_t) dt + \sqrt{2} dz_t^{(\sigma)}$$

$$z_t^{(\sigma)} \text{ is a } \sigma^2 C \text{-Wiener process}$$

$$x_t \text{ has invariant measure } \nu_{\sigma}$$

Reparametrization

Optimize:
$$\arg \min_{\theta} \mathbb{E}_{\xi \sim \mu_{\sigma}} \mathbb{E}_{u \sim \mu} \|\xi + F_{\theta}(u + \xi)\|_{H}^{2}$$

Discretize: $dx_{t} = F_{\theta}(x_{t}) dt + \sqrt{2} dz_{t}^{(\sigma)}$

Score Matching in Infinite Dimensions

Regularity Gap

Assumptions

$$\begin{aligned} & H = \dot{L}^2(\mathbb{T}^d), \ \mu = N(0, C_1), \ \mu_{\sigma} = N(0, \sigma^2 C_2) \\ & C_1 = (-\Delta)^{-\alpha_1}, \ C_2 = (-\Delta)^{-\alpha_2}, \ \alpha_1, \alpha_2 > d/2 \end{aligned}$$

Regularity Gap

$$\mu(H_0) = 1$$
 is satisfied iff $\alpha_1 - \alpha_2 > d/2$

Dissipative Dynamics

 $\mu(H_0) = 1$ satisfied if μ is a pushforward under a smoothing map

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Score Matching in Infinite Dimensions

Smoothing Operators

Perturbation

$$u_{\sigma} = (A_{\sigma})_{\sharp} \mu * \mu_{\sigma}, \ A_{\sigma} : H \to H_0$$

 $u_{\sigma} \sim \mu_{\sigma} \text{ equivalent with no assumptions on } \mu$ Idea: apply smoothing to data $A_{\sigma} \rightarrow I$ as $\sigma \rightarrow 0$

Example

 $A_{\sigma} = e^{\sigma \Delta}$ solution operator for heat equation

-Numerical Examples

Numerical Examples

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

-Numerical Examples

Mixture of Gaussian Fields

Using trace-class noise yields a resolution invariant map

<u>Numerical</u> Examples

Super Resolution for Navier-Stokes

Super-resolution for NS preserves data statistics

-Numerical Examples

Super Resolution for MNIST

Figure: 64×64

Figure: 128 × 128

Figure: 256×256

Conclusion

Conclusion

This Talk

- Infinite dimensional score matching
- Operator learning + trace-class covariance
- Learn consistently across resolutions

Future Directions

- SDE formulation in infinite dimensions
- Flow ODE in infinite dimensions
- Bayesian inverse problems
- Rates for convergence of approximation