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The Problem

Setting

Input-Output Map: Ψ† : X → Y, Separable Banach Spaces

Data: {xn, yn}Nn=1, yn = Ψ†(xn),

xn
i.i.d.∼ µ or {xn} ⊂ K compact

Goal

Parameter Space Θ ⊆ Rp

Operator Class: Ψ : X ×Θ→ Y

Operator Approximation: Ψ(·; θ?) ≈ Ψ†

Key Idea

Design Architecture On Banach Space Then Discretize



Function Space
SL

N.B.K.

Problem Setting

Model
Reduction
Approach

Application to
Crystal
Plasticity

Kernel Network
Approach

Application to
Turbulent Flow

Learning Linear
Operators

Conclusion

Example

Elliptic PDE

−∇ ·
(
a∇u) = f in D

u = g in ∂D

Operator Of Interest

Nonlinear Ψ† : a ∈ L∞(D) 7→ u ∈ H1(D)

Error Metric

‖Ψ† −Ψ‖Lpµ(X ;Y) or sup
x∈K
‖Ψ†(x)−Ψ(x)‖Y
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Key Idea

Example What Goes Wrong If You Discretize And Then Apply Standard Neural Network Algorithms

[1] Y Zhu and N Zabaras

Design Architecture On Banach Space Then Discretize



Function Space
SL

N.B.K.

Problem Setting

Model
Reduction
Approach

Application to
Crystal
Plasticity

Kernel Network
Approach

Application to
Turbulent Flow

Learning Linear
Operators

Conclusion

Model Reduction Approach

K Bhattacharya, B Hosseini, NB Kovachki and AM Stuart
Model Reduction And Neural Networks For Parametric PDEs

SMAI-JCM 7, 121-157.

Neural Operator: Neural Networks For Maps Between Function Spaces
arXiv:2108.08481.
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The Idea

In A Picture

In Equations

GX ◦ FX ≈ IX

GY ◦ FY ≈ IY

GY ◦ ϕ ◦ FX ≈ Ψ†
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Existence of the Approximation

Lemma
• X , Y Banach spaces with the approximation property (AP).

• Ψ† : X → Y continuous.

For any K ⊂ X compact and ε > 0 there exist bounded linear maps FX : X → RdX ,
GY : RdY → Y, and a continuous map ϕ ∈ C(RdX ;RdY ) such that

sup
x∈K
‖Ψ†(x)− (GY ◦ ϕ ◦ FX )(x)‖Y ≤ ε.

Lemma
• X Banach space with AP, Y separable Hilbert space.

• µ probability measure on X .

• Ψ† ∈ Lp
µ(X ;Y) for 1 ≤ p <∞.

As before,
‖Ψ† − GY ◦ ϕ ◦ FX‖Lpµ(X ;Y) ≤ ε.
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PCA-NET

Architecture

ΨPCA(x ; θ)(s) =
m∑
j=1

αj (Lx ; θ)ψj (s), ∀x ∈ X s ∈ D.

Details

• Lx maps to PCA coefficients under µ.

• {ψj} are PCA basis functions under (Ψ†)]µ.

• α : Rd → Rm finite dimensional neural network.

• Non-intrusive reduced basis method.
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Universal Approximation

Theorem

Let Ψ† ∈ Lpµ(X ;Y). For any ε > 0, there are dimensions (dX , dY)(ε), a requisite
amount of data N = N(dX , dY), and a neural network ψ depending on ε, dX , dY
such that

E{xj}∼µ‖Ψ† −ΨNN‖Lpµ(X ;Y) ≤ ε
where ΨNN = GY ◦ ψ ◦ FX with GY and FX defined by PCA.
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Example: Darcy

Elliptic PDE

−∇ ·
(
a∇u) = 1, s ∈ D = (0, 1)2

u = 0, s ∈ ∂D.

Operator Of Interest

Nonlinear Ψ† : a ∈ L∞(D) 7→ u ∈ H1
0 (D).
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Example: Darcy (piecewise-constant)

Input-Output

Input: a ∈ L∞(D) (Left),

Output: u ∈ H1
0 (D). (Right),
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Example: Darcy (piecewise-constant)

Architecture defined on function space
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Example: Darcy (piecewise-constant)

Care needed in relating N and d
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Application to Crystal Plasticity

BG Liu, NB Kovachki, Z Li, K Azizzadenesheli,
A Anandkumar, AM Stuart and K Bhattacharya

A learning-based multiscale method and its application to inelastic impact problems
arXiv:2102.07256.
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Mechanical Model

Nonlinear PDE

ρ0(x)ü(s, t) = ∇s · P[∇u](s, t) + ρ0(s)b(s, t), (s, t) ∈ D × [0,T ]

(P[∇u]n)(s, t) = h(s, t), (s, t) ∈ Γa × [0,T ]

u(s, t) = g(s, t) (s, t) ∈ Γb × [0,T ]

u(s, 0) = x , s ∈ D

u̇(s, 0) = u0(s), s ∈ D

Operator Of Interest

• Homogenization: microscale computations define constitutive law.

• Map strain on each cell boundary to interior stress:

Ψ† : {[0,T ]→ R3×3} → {[0,T ]→ R3×3}
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Taylor Anvil Test
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Blunt Impact
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Computational Cost

Micromechancial model Blunt impact Taylor Anvil
Surrogate 8.6× 10−2 4.1× 10−2

Taylor RVE 9.0× 101 4.2× 101

Periodic RVE 2.5× 106 1.2× 106

Table: Computational cost per time step in seconds on a single CPU.
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Neural Operator: A Kernel Network
Approach

Z Li, NB Kovachki, K Azizzadenesheli,
BG Liu, K Bhattacharya, AM Stuart and A Anandkumar

Neural Operator: Graph Kernel Network for Partial Differential Equations
arXiv:2003.03485

Multipole Graph Neural Operator for Parametric Partial Differential Equations
NeurIPS (2020). arXiv:2006.09535

Fourier Neural Operator for Parametric Partial Differential Equations
ICLR (2021). arXiv:2010.08895

Neural Operator: Neural Networks For Maps Between Function Spaces
arXiv:2108.08481.

NB Kovachki, S Lanthaler, S Mishra
On universal approximation and error bounds for Fourier Neural Operators

arXiv:2107.07562
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Linear Approximation Theory

Linear Approximation

Input-Output Map: Ψ† : X → Y, Separable Banach Spaces

Basis: span{ϕ1, ϕ2, . . . } = Y

Solution Manifold: M = {Ψ†(x) : x ∈ X} ⊂ Y

n-term Approximation:
n∑

j=1

αjϕj , αj ∈ R

Approximation Space: Vn = span{ϕ1, . . . , ϕn}
Kolgomorov n-width: dn(M)Y := inf

dim(Vn)≤n
sup
v∈M

min
w∈Vn

‖v − w‖Y

PCA:
∞∑

j=n+1

λj ≤ dn(M)2
Y

Motivation

If M is not well approximated by a linear space, need non-linear approximation.
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Neural Networks in Infinite Dimensions

Classical Neural Networks

v0 = x

vl+1 = σ
(
Alvl + bl), l = 0, . . . , L− 1

y = ALvL + bL

σ : R→ R, Al ∈ Rdl+1×dl , bl ∈ Rdl+1

In Function Space

{σ : R→ R} 7→ {σ(x)(s) = σ(x(s))} (Nemytskii)

{Al ∈ Rdl+1×dl } 7→
{

(Alx) =

∫
D

κl(·, z)x(z) dz
}

(Integral Kernel Operator)
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Neural Networks in Infinite Dimensions

New Architecture

Input: x : D ⊂ Rd → Rm

Output: y : D ′ ⊂ Rd′ → Rr

Iteration:

v0(s) = P(x(s), s)

vl+1(s) = σ

(
Wlvl(s) +

∫
D

κl(s, z)vl(z) dz + bl(s)

)
, l = 0, . . . , L− 1

y(s) = Q(vL(s), s)

P : Rm+d → Rd0 , Wl ∈ Rdl+1×dl , κl : R2n → Rdl+1×dl , bl : Rn → Rdl+1 , Q : RL+d′ → Rr

Approximation Map

(Ψ(x))(s) := y(s)
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Connection to Transformers

One Layer Update

x : D ⊂ Rd → Rn

y(s) = σ

(
Wx(s) +

∫
D

κ(s, z)x(z) dz + b(s)

)

Transformer Structure

κ(s, z) 7→ κx(x(s), x(z)),

κx(x(s), x(z)) = gx(x(s), x(z))V , V ∈ Rn×n, gx : R2n → R

gx(x(s), x(z)) =

(∫
D

exp

(
〈Qx(r),Kx(z)〉√

n

)
dr

)−1

exp

(
〈Qx(s),Kx(z)〉√

n

)
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Uniform Approximation over Compacta

Assumption

D ⊂ Rd and D ′ ⊂ Rd ′ bounded Lipschitz domains.

• X = Lp1(D) for 1 ≤ p1 <∞.

• X = W k1,p1(D) for 1 ≤ p1 <∞.

• X = C (D).

• Y = Lp2(D ′) for 1 ≤ p2 <∞.

• Y = W k2,p2(D ′) for 1 ≤ p2 <∞.

• Y = C k2(D ′) for k2 ∈ N0.
Ψ† : X → Y continuous.

Theorem

For any K ⊂ X compact and ε > 0, there exists an architecture Ψ : X → Y such
that

sup
x∈K
‖Ψ†(x)−Ψ(x)‖Y ≤ ε.
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Bochner Norm Approximation

Assumption

D ⊂ Rd and D ′ ⊂ Rd ′ bounded Lipschitz domains.

• X = Lp1(D) for 1 ≤ p1 <∞.

• X = W k1,p1(D) for 1 ≤ p1 <∞.

• X = C (D).

• Y = L2(D ′).

• Y = Hk2(D ′).

•
Ψ† ∈ Lp3

µ (X ;Y) with µ probability measure on X .

Theorem

For any ε > 0, there exists an architecture Ψ : X → Y such that

‖Ψ† −Ψ‖Lp3
µ (X ;Y) ≤ ε.
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Computation

One Layer Update

x : D ⊂ Rd → Rn

y(s) = σ

(
Wx(s) +

∫
D

κ(s, z)x(z) dz + b(s)

)

Computing the Integral Kernel

• Restrict integration to balls:
∫
D
→
∫
Br (s)

.

• Monte Carlo sampling:
∫
D
≈ |D|

m

∑m
j=1.

• Fast Multiple Method.

• Let κ(s, z) = κ(s − z), parametrize Fourier components θ:∫
D

κ(s − z)x(z) dz = F−1(θ · F(x)
)
.
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FNO Universal Approximation

Theorem

• D ⊆ Td bounded, Lipschitz domain.

• E : Hs(D)→ Hs(Td) linear, periodic extension operator for s ≥ 0.

• Ψ† : Hs(D)→ Hs′(D) continuous for s, s ′ ≥ 0.

For any K ⊂ Hs(D) compact and ε > 0, there exists an architecture
Ψ : Hs(Td)→ Hs′(Td) such that

sup
x∈K
‖Ψ†(x)−

(
(Ψ ◦ E )(x)

)
|D‖Hs′ (D) ≤ ε.
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Steady-State Darcy Flow

PDE

−∇ · (a∇u) = f in Td

• s > d/2 + k with k ∈ N and f ∈ Ḣk−1(Td).

• a ∈ Hs(Td) with a = 1 + ã such that, for some λ ∈ (0, 1),

‖a‖Hs ≤ λ−1, ‖ã‖L∞ ≤ 1− λ.

• Ψ† : a 7→ u.

Theorem
For any ε > 0, there exists a FNO Ψ : As

λ(Td)→ H1(Td) such that

sup
a∈As

λ(Td )

‖Ψ†(a)−Ψ(a)‖H1 ≤ ε,

size(Ψ) . ε−
d
k log ε−1, depth(Ψ) . log ε−1.
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Navier-Stokes/Euler

PDE

∂tu = −P(u · ∇u) + ν∆u in [0,T ]× Td

• u ∈ C ([0,T ];Hs) ∩ C 1([0,T ];Hs−2) with s > d/2 + 2.

• u0 divergence-free, mean zero s.t. u exists and is bounded.

• Ψ† : u0 7→ u(T , ·).

Theorem
For any ε > 0, there exists a FNO Ψ : As(Td ;Rd)→ L2(Td ;Rd) such that

sup
a∈As(Td )

‖Ψ†(a)−Ψ(a)‖L2 ≤ ε,

size(Ψ) . ε−( 1
2

+ d
s ) log ε−1, depth(Ψ) . ε−

1
2 log ε−1.



Function Space
SL

N.B.K.

Problem Setting

Model
Reduction
Approach

Application to
Crystal
Plasticity

Kernel Network
Approach

Application to
Turbulent Flow

Learning Linear
Operators

Conclusion

Example: Burgers

Burgers’ Equation

∂tu + ∂z(u2/2) = ν∂zzu, (z , t) ∈ T1 × (0, 1]

u|t=0 = u0, z ∈ T1.

Operator Of Interest

Nonlinear Ψ† : u0 ∈ L2(T1) 7→ u|t=1 ∈ Hs(T1).
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Example: Burgers

Input-Output

Input: u0 ∈ L2(T1) (Left),

Output: u ∈ Hs(T1). (Right),
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Example: Burgers
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Example: Darcy Inverse Problem
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Application to Turbulent Flow

Z Li, NB Kovachki, K Azizzadenesheli,
BG Liu, K Bhattacharya, AM Stuart and A Anandkumar

Fourier Neural Operator for Parametric Partial Differential Equations
ICLR (2021). arXiv:2010.08895

Markov Neural Operators for Learning Chaotic Systems
arXiv:2106.06898
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Fluid Flow on the Torus

Nonlinear PDE

du

dt
− νP∆u + P(u · ∇)u = f , s ∈ T2, t ∈ [0,T ]

u(0) = u0 s ∈ T2

Operator Of Interest

ω = ∇× u

Ψ† : ω|t=0 ∈ L2(T2) 7→ w |t=T ∈ Hs(T2)
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Predicting Trajectories

• Re = O(103), N = 10, 000, error = 3% in H1.

• Trained on 64× 64 grid and evaluated on 256× 256.
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An Inverse Problem

• MCMC: 2 minutes for 50,000 samples with FNO, 30 hours with a
pseudo-spectral solver.
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Learning Linear Operators from Noisy
Data

MV de Hoop, NB Kovachki, NH Nelsen, AM Stuart
Convergence Rates for Learning Linear Operators from Noisy Data

arXiv:2108.12515.
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The Problem

Setting

Noisy Linear Map: L† : X → Y, y = L†x + η

Assumptions: π(dx , dy) : x ∼ µ = N(0,C), η ∼ N(0, Γ), x ⊥ η

Data: {xn, yn}Nn=1
i.i.d.∼ π

Risk

Expected Risk: e∞(L) = E{x,y}∼π
1

2
‖Lx‖2

Y − 〈y , Lx〉Y

Empirical Risk: eN(L) =
1

N

N∑
n=1

[
1

2
‖Lxn‖2

Y − 〈yn, Lxn〉Y
]

+ ‖L‖2
CM

Optimizers: L̂ = inf
L
e∞(L), L̂(N) = inf

L
eN(L)
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Statistical Approximation

Theorem

Excess Risk: e∞(L̂(N))− e∞(L̂) = ‖L̂(N) − L̂‖2
L2
µ(X ,Y)

Theorem

BIP: Y = RXL + E , X ∼ N(0,C)⊗N ,E ∼ N(0, Γ)⊗N

Posterior: L|Y ,X ∼ νY ,X

Expectation: E = E{xn,yn}∼π
⊗N

Eν
Y ,X

Error: C1N
−α ≤ E‖L− L̂‖2

L2
µ(X ,Y) ≤ C2N

−α, ∀N ≥ Nc

Error: C1N
−α ≤ ‖L̂(N) − L̂‖2

L2
µ(X ,Y) ≤ C2N

−α, ∀N ≥ Nc , w.h.p.
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Numerical Illustration

Learning Compact, Bounded and Unbounded Operators

A := −∆, D(A) = H2(I ) ∩ H1
0 (I ), I = (0, 1).

L = A, Id, A−1.

103 104

n

A (unbounded)

I (bounded)

A−1 (compact)
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Conclusions

1 Neural networks: empirical success in function approximation.

2 Typically:
• regression: Rm 7→ Rn;
• classification: Rm 7→ {1, . . . ,K}.

3 We consider: X 7→ Y, X ,Y function spaces.

4 Key Idea: Conceive of architecture then discretize.

5 Purely data-driven (“equation-free”).

6 Applications: PDEs (model available), Cyber-physical systems, Imaging,
Time-series (no model available).

7 Less data needed to learn the forward than the inverse operator.

8 Future work: theory for data needed to achieve given error, posterior
consistency for inverse problems.
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Example: Poisson

Elliptic PDE

−∆u = f , z ∈ D = (0, 1)2

u = 0, z ∈ ∂D.

Operator Of Interest

Linear (Forcing) Ψ† : f ∈ L2(D) 7→ u ∈ H1
0 (D)

Lemma

Let f =
∑∞

j=1 ξjφj and suppose (‖φj‖L∞)j≥1 ∈ `p for some p ∈ (0, 1). Then

lim
K→∞

sup
ξ
‖Ψ†(ξ)−

K∑
j=1

ξjηj‖H1
0

= 0

by viewing Ψ† : `∞ → H1
0 , where −∆ηj = φj , ηj |∂D = 0 for each j ∈ N.
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Input-Output

Input: f ∈ L2(D) (Left),

Output: u ∈ H1
0 (D). (Right),
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Example: Darcy (log-normal)

Input-Output

Input: a ∈ L2(D) (Left),

Output: u ∈ H1
0 (D). (Right),
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Example: Darcy (log-normal)
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Example: Darcy (piecewise-constant)
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Example: Darcy (mesh transfer)

Figure: (Left) Piecewise-constant. (Right) Log-normal.
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Taylor Anvil Test
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Blunt Impact
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Conv Nets are Parametrized for Grids
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Example: Poisson

Elliptic PDE

−∆u = f , z ∈ D = (0, 1)

u = 0, z ∈ ∂D.

Operator Of Interest

Linear (Forcing) Ψ† : f ∈ L2(D) 7→ u ∈ H1
0 (D)

Architecture

u(s) =

∫
D
κ(s, z ; θ)f (z) dz
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