Function Space SL

N.B.K.

Problem Setting

Model Reduction Approach

Application to Crystal Plasticity

Kernel Network

Application to

Learning Linea

Conclusion

Learning Operators for Forward and Inverse Problems

Nikola B. Kovachki

Computing and Mathematical Sciences California Institute of Technology

Isaac Newton Institute for Mathematical Sciences
Deep Learning and Inverse Problems
Sep 30th, 2021

Table of Contents

Function Space SL

Caltech

N.B.K.

① Problem Setting

2 Model Reduction Approach

3 Application to Crystal Plasticity

4 Kernel Network Approach

6 Application to Turbulent Flow

6 Learning Linear Operators

Conclusion

Kernel Networ

Application to Turbulent Flow

Learning Linear Operators

Conclusion

Caltech The Problem

Function Space SL

N.B.K.

Problem Setting

Model Reduction Approach

Application to Crystal Plasticity

Kernel Netwo

Application to Turbulent Flow

Learning Linear Operators

Conclusion

Setting

Input-Output Map: $\Psi^{\dagger}: \mathcal{X} \to \mathcal{Y}$, Separable Banach Spaces

Data: $\{x_n, y_n\}_{n=1}^N$, $y_n = \Psi^{\dagger}(x_n)$,

 $x_n \overset{i.i.d.}{\sim} \mu$ or $\{x_n\} \subset K$ compact

Goal

Parameter Space $\Theta \subseteq \mathbb{R}^p$

Operator Class: $\Psi: \mathcal{X} \times \Theta \rightarrow \mathcal{Y}$

Operator Approximation: $\Psi(\cdot; \theta^*) \approx \Psi^{\dagger}$

Key Idea

Design Architecture On Banach Space Then Discretize

Function Space SL

N.B.K.

Problem Setting

Model Reduction Approach

Application Crystal Plasticity

Kernel Netwo

Application to Turbulent Flow

Learning Linear Operators

Conclusion

Elliptic PDE

$$-\nabla \cdot (a\nabla u) = f \quad \text{in } D$$
$$u = g \quad \text{in } \partial D$$

Operator Of Interest

Nonlinear $\Psi^{\dagger}: a \in L^{\infty}(D) \mapsto u \in H^{1}(D)$

Error Metric

$$\|\Psi^\dagger - \Psi\|_{L^p_\mu(\mathcal{X};\mathcal{Y})} \quad ext{ or } \quad \sup_{x \in K} \|\Psi^\dagger(x) - \Psi(x)\|_{\mathcal{Y}}$$

Key Idea

Function Space SL

N.B.K.

Problem Setting

Model Reduction Approach

Application Crystal Plasticity

Kernel Network
Approach

Application to Turbulent Flow

Learning Linear Operators

Conclusion

Example What Goes Wrong If You Discretize And Then Apply Standard Neural Network Algorithms

[1] Y Zhu and N Zabaras

Design Architecture On Banach Space Then Discretize

Function Space SL

N.B.K.

Problem Setting

Model Reduction Approach

Application to Crystal Plasticity

Kernel Network

Application to

Learning Linea

Conclusion

Model Reduction Approach

K Bhattacharya, B Hosseini, NB Kovachki and AM Stuart Model Reduction And Neural Networks For Parametric PDEs SMAI-JCM 7, 121-157.

Neural Operator: Neural Networks For Maps Between Function Spaces arXiv:2108.08481.

Caltech The Idea

Function Space SL

N.B.K.

hlam Satti

Model Reduction Approach

Application t Crystal Plasticity

Kernel Networ Approach

Application to Turbulent Flow

Learning Linear Operators

Conclusion

In A Picture

In Equations

$$egin{aligned} G_{\mathcal{X}} \circ F_{\mathcal{X}} &pprox I_{\mathcal{X}} \ G_{\mathcal{Y}} \circ F_{\mathcal{Y}} &pprox I_{\mathcal{Y}} \ G_{\mathcal{Y}} \circ arphi \circ F_{\mathcal{X}} &pprox \Psi^{\dagger} \end{aligned}$$

Existence of the Approximation

Function Space SL

N.B.K.

...

Model Reduction Approach

Application : Crystal

Kernel Network Approach

Application to Turbulent Flov

Learning Linea Operators

Conclusion

Lemma

- \mathcal{X} , \mathcal{Y} Banach spaces with the approximation property (AP).
- $\Psi^{\dagger}: \mathcal{X}
 ightarrow \mathcal{Y}$ continuous.

For any $K \subset \mathcal{X}$ compact and $\epsilon > 0$ there exist bounded linear maps $F_{\mathcal{X}} : \mathcal{X} \to \mathbb{R}^{d_{\mathcal{X}}}$, $G_{\mathcal{Y}} : \mathbb{R}^{d_{\mathcal{Y}}} \to \mathcal{Y}$, and a continuous map $\varphi \in C(\mathbb{R}^{d_{\mathcal{X}}}; \mathbb{R}^{d_{\mathcal{Y}}})$ such that

$$\sup_{x\in K}\|\Psi^{\dagger}(x)-(\mathcal{G}_{\mathcal{Y}}\circ\varphi\circ F_{\mathcal{X}})(x)\|_{\mathcal{Y}}\leq\epsilon.$$

Lemma

- ullet ${\mathcal X}$ Banach space with AP, ${\mathcal Y}$ separable Hilbert space.
- μ probability measure on \mathcal{X} .
- $\Psi^{\dagger} \in L^p_{\mu}(\mathcal{X}; \mathcal{Y})$ for $1 \leq p < \infty$.

As before,

$$\|\Psi^{\dagger} - G_{\mathcal{Y}} \circ \varphi \circ F_{\mathcal{X}}\|_{L^{p}_{\mu}(\mathcal{X};\mathcal{Y})} \leq \epsilon.$$

Caltech PCA-NET

Function Space SL

N.B.K.

roblem Settin

Model Reduction Approach

Application of Crystal Plasticity

Kernel Networ Approach

Application to Turbulent Flow

Learning Linear Operators

Conclusion

Architecture

$$\Psi_{PCA}(x;\theta)(s) = \sum_{j=1}^{m} \alpha_j(Lx;\theta)\psi_j(s), \quad \forall x \in \mathcal{X} \qquad s \in D$$

Details

- Lx maps to PCA coefficients under μ .
- $\{\psi_i\}$ are PCA basis functions under $(\Psi^{\dagger})^{\sharp}\mu$.
- $\alpha: \mathbb{R}^d \to \mathbb{R}^m$ finite dimensional neural network.
- Non-intrusive reduced basis method.

Universal Approximation

Function Space SL

N.B.K.

roblem Settir

Model Reduction Approach

Application t Crystal Plasticity

Kernel Network Approach

Application to Turbulent Flow

Learning Linea Operators

Conclusion

Theorem

Let $\Psi^{\dagger} \in L^p_{\mu}(\mathcal{X}; \mathcal{Y})$. For any $\epsilon > 0$, there are dimensions $(d_{\mathcal{X}}, d_{\mathcal{Y}})(\epsilon)$, a requisite amount of data $N = N(d_{\mathcal{X}}, d_{\mathcal{Y}})$, and a neural network ψ depending on $\epsilon, d_{\mathcal{X}}, d_{\mathcal{Y}}$ such that

$$\mathbb{E}_{\{x_j\} \sim \mu} \| \Psi^{\dagger} - \Psi_{NN} \|_{L^p_{\mu}(\mathcal{X}; \mathcal{Y})} \leq \epsilon$$

where $\Psi_{NN} = G_{\mathcal{Y}} \circ \psi \circ F_{\mathcal{X}}$ with $G_{\mathcal{Y}}$ and $F_{\mathcal{X}}$ defined by PCA.

Function Space SL

N.B.K.

Problem Settin

Model Reduction Approach

Application Crystal Plasticity

Kernel Network Approach

Application to Turbulent Flow

Learning Linea Operators

Conclusion

Elliptic PDE

$$-\nabla \cdot (a\nabla u) = 1, \quad s \in D = (0,1)^2$$

$$u = 0, \quad s \in \partial D.$$

Operator Of Interest

Nonlinear $\Psi^{\dagger}: a \in L^{\infty}(D) \mapsto u \in H^1_0(D)$.

Example: Darcy (piecewise-constant) Caltech

Function Space SL

N.B.K.

Model Reduction Approach

Input-Output

Input: $a \in L^{\infty}(D)$ (Left).

Output: $u \in H_0^1(D)$.

(Right),

Caltech Example: Darcy (piecewise-constant)

Function Space SL

N.B.K.

Problem Settii

Model Reduction Approach

Application to Crystal

Kernel Netwo

Application to Turbulent Flow

Learning Linea Operators

Canalusian

Architecture defined on function space

Caltech Example: Darcy (piecewise-constant)

Function Space SL

N.B.K.

Problem Setting

Model Reduction Approach

Application to Crystal Plasticity

Kernel Netwo

Application to Turbulent Flow

Learning Linea
Operators

Conclusion

Care needed in relating N and d

Function Space SL

N.B.K.

Problem Setting

Model Reduction Approach

Application to Crystal Plasticity

Kernel Networ

Application to

Learning Linea

Conclusion

Application to Crystal Plasticity

BG Liu, NB Kovachki, Z Li, K Azizzadenesheli, A Anandkumar, AM Stuart and K Bhattacharya A learning-based multiscale method and its application to inelastic impact problems arXiv:2102.07256.

Mechanical Model

Function Space SL

N.B.K.

Problem Settin

Model Reduction

Approach

Application to Crystal Plasticity

Approach

Application to Turbulent Flow

Learning Linea Operators

Conclusion

Nonlinear PDE

$$egin{aligned}
ho_0(x)\ddot{u}(s,t) &=
abla_s \cdot P[
abla u](s,t) +
ho_0(s)b(s,t), & (s,t) \in D imes [0,T] \ (P[
abla u]n)(s,t) &= h(s,t), & (s,t) \in
abla_a imes [0,T] \ u(s,t) &= g(s,t) & (s,t) \in
abla_b imes [0,T] \ u(s,0) &= x, & s \in D \ \dot{u}(s,0) &= u_0(s), & s \in D \end{aligned}$$

Operator Of Interest

- Homogenization: microscale computations define constitutive law.
- Map strain on each cell boundary to interior stress:

$$\Psi^{\dagger}:\{[0,T]\rightarrow\mathbb{R}^{3\times3}\}\rightarrow\{[0,T]\rightarrow\mathbb{R}^{3\times3}\}$$

Caltech Taylor Anvil Test

Function Space SL

N.B.K.

Problem Settin

Model Reduction

Application to Crystal Plasticity

Kernel Networ

Application to Turbulent Flow

Learning Linea Operators

Conclusion

Blunt Impact Caltech

Function Space SL N.B.K.

Application to Crystal

Plasticity

Computational Cost

Function Space SL

Caltech

N.B.K.

Problem Settin

Model Reduction Approach

Application to Crystal Plasticity

Kernel Networ Approach

Application to Turbulent Flow

Learning Linea Operators

Conclusion

Micromechancial model	Blunt impact	Taylor Anvil
Surrogate	$8.6 imes 10^{-2}$	4.1×10^{-2}
Taylor RVE	$9.0 imes 10^1$	4.2×10^{1}
Periodic RVE	$2.5 imes 10^6$	1.2×10^{6}

Table: Computational cost per time step in seconds on a single CPU.

Function Space SL

N.B.K.

Problem Setting

Model Reduction Approach

Application to Crystal Plasticity

Kernel Network Approach

Application to Turbulent Flow

Learning Linea
Operators

Conclusion

Neural Operator: A Kernel Network Approach

Z Li, NB Kovachki, K Azizzadenesheli, BG Liu, K Bhattacharya, AM Stuart and A Anandkumar Neural Operator: Graph Kernel Network for Partial Differential Equations

Multipole Graph Neural Operator for Parametric Partial Differential Equations
NeurIPS (2020) arXiv: 2006.09535

Fourier Neural Operator for Parametric Partial Differential Equations

TCLR (2021). arXiv:2010.08895

Neural Operator: Neural Networks For Maps Between Function Spaces arXiv:2108.08481.

NB Kovachki, S Lanthaler, S Mishra
On universal approximation and error bounds for Fourier Neural Operators
arXiv:2107.07562

Linear Approximation Theory

Function Space SL

N.B.K.

lem Setti

Model Reduction

Application

Crystal Plasticity

Kernel Network Approach

Application to Turbulent Flow

Learning Linear Operators

Conclusion

Linear Approximation

Input-Output Map: $\Psi^{\dagger}: \mathcal{X} \to \mathcal{Y}$, Separable Banach Spaces

Basis: $\mathsf{span}\{\varphi_1,\varphi_2,\dots\}=\mathcal{Y}$

Solution Manifold: $\mathcal{M} = \{\Psi^\dagger(x): x \in \mathcal{X}\} \subset \mathcal{Y}$

n-term Approximation: $\sum_{i=1}^{n} \alpha_{i} \varphi_{j}, \quad \alpha_{j} \in \mathbb{R}$

Approximation Space: $V_n = \text{span}\{\varphi_1, \dots, \varphi_n\}$

Kolgomorov *n*-width: $d_n(\mathcal{M})_{\mathcal{Y}} := \inf_{\dim(V_n) \le n} \sup_{v \in \mathcal{M}} \min_{w \in V_n} \|v - w\|_{\mathcal{Y}}$

PCA: $\sum_{i=n+1}^{\infty} \lambda_j \leq d_n(\mathcal{M})_{\mathcal{Y}}^2$

Motivation

If ${\mathcal M}$ is not well approximated by a linear space, need non-linear approximation.

Neural Networks in Infinite Dimensions

Function Space SL

N.B.K.

oblem Settir

Model Reduction Approach

Crystal Plasticity

Kernel Network Approach

Application to Turbulent Flow

Learning Lineal Operators

Conclusion

Classical Neural Networks

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

In Function Space

$$\{\sigma: \mathbb{R} \to \mathbb{R}\} \mapsto \{\sigma(x)(s) = \sigma(x(s))\}$$
 (Nemytskii)
$$\{A_l \in \mathbb{R}^{d_{l+1} \times d_l}\} \mapsto \left\{(A_l x) = \int_D \kappa_l(\cdot, z) x(z) \ dz\right\}$$
 (Integral Kernel Operator)

Neural Networks in Infinite Dimensions

Function Space SL

N.B.K.

olem Settin

Model Reduction

Application Crystal Plasticity

Kernel Network Approach

Application to Turbulent Flow

Learning Linear Operators

Conclusion

New Architecture

Input: $x:D\subset\mathbb{R}^d\to\mathbb{R}^m$

Output: $y: D' \subset \mathbb{R}^{d'} \to \mathbb{R}^r$

Iteration:

$$v_0(s) = P(x(s), s)$$

$$v_{l+1}(s) = \sigma\left(W_lv_l(s) + \int_D \kappa_l(s,z)v_l(z) dz + b_l(s)\right), \quad l = 0,\ldots,L-1$$

$$y(s) = Q(v_L(s), s)$$

$$P: \mathbb{R}^{m+d} \to \mathbb{R}^{d_0}, \quad W_l \in \mathbb{R}^{d_{l+1} \times d_l}, \quad \kappa_l: \mathbb{R}^{2n} \to \mathbb{R}^{d_{l+1} \times d_l}, \quad b_l: \mathbb{R}^n \to \mathbb{R}^{d_{l+1}}, \quad Q: \mathbb{R}^{L+d'} \to \mathbb{R}^r$$

Approximation Map

$$(\Psi(x))(s) := y(s)$$

Connection to Transformers

Function Space SL

N.B.K.

blem Settin

Model Reduction Approach

Application of Crystal Plasticity

Kernel Network Approach

Application to Turbulent Flow

Learning Linear Operators

Conclusion

One Layer Update

$$x: D \subset \mathbb{R}^d \to \mathbb{R}^n$$

$$y(s) = \sigma \left(Wx(s) + \int_D \kappa(s, z) x(z) dz + b(s) \right)$$

Transformer Structure

$$\kappa(s,z) \mapsto \kappa_x(x(s),x(z)), \ \kappa_x(x(s),x(z)) = g_x(x(s),x(z))V, \qquad V \in \mathbb{R}^{n \times n}, \ g_x : \mathbb{R}^{2n} \to \mathbb{R}$$

$$g_{x}(x(s),x(z)) = \left(\int_{D} \exp\left(\frac{\langle Qx(r),Kx(z)\rangle}{\sqrt{n}}\right) dr\right)^{-1} \exp\left(\frac{\langle Qx(s),Kx(z)\rangle}{\sqrt{n}}\right)$$

Uniform Approximation over Compacta

Function Space SL

N.B.K.

roblem Setting

Model Reductio

Application Crystal Plasticity

Kernel Network Approach

Application to Turbulent Flow

Learning Linea Operators

Conclusion

Assumption

 $D \subset \mathbb{R}^d$ and $D' \subset \mathbb{R}^{d'}$ bounded Lipschitz domains.

•
$$\mathcal{X} = L^{p_1}(D)$$
 for $1 \le p_1 < \infty$.

•
$$\mathcal{X} = W^{k_1, p_1}(D)$$
 for $1 \le p_1 < \infty$.

•
$$\mathcal{X} = C(D)$$
.

 $\Psi^{\dagger}: \mathcal{X} \to \mathcal{Y}$ continuous.

•
$$\mathcal{Y} = L^{p_2}(D')$$
 for $1 \le p_2 < \infty$.

•
$$\mathcal{Y} = W^{k_2, p_2}(D')$$
 for $1 \le p_2 < \infty$.

•
$$\mathcal{Y} = C^{k_2}(D')$$
 for $k_2 \in \mathbb{N}_0$.

Theorem

For any $K \subset \mathcal{X}$ compact and $\epsilon > 0$, there exists an architecture $\Psi : \mathcal{X} \to \mathcal{Y}$ such that

$$\sup_{x \in K} \|\Psi^{\dagger}(x) - \Psi(x)\|_{\mathcal{Y}} \le \epsilon.$$

Bochner Norm Approximation

Function Space SL

N.B.K.

roblem Settin

Problem Settin

Reduction

Application Crystal

Kernel Network Approach

Application to Turbulent Flow

Learning Linear Operators

Conclusion

Assumption

 $D \subset \mathbb{R}^d$ and $D' \subset \mathbb{R}^{d'}$ bounded Lipschitz domains.

•
$$\mathcal{X} = L^{p_1}(D)$$
 for $1 \leq p_1 < \infty$.

•
$$\mathcal{Y} = L^2(D')$$
.

•
$$\mathcal{X} = W^{k_1,p_1}(D)$$
 for $1 \le p_1 < \infty$.

•
$$\mathcal{Y} = H^{k_2}(D')$$
.

•
$$\mathcal{X} = C(D)$$
.

 $\Psi^{\dagger} \in L^{p_3}_{\mu}(\mathcal{X}; \mathcal{Y})$ with μ probability measure on \mathcal{X} .

Theorem

For any $\epsilon > 0$, there exists an architecture $\Psi : \mathcal{X} \to \mathcal{Y}$ such that

$$\|\Psi^{\dagger} - \Psi\|_{L^{p_3}_{\mu}(\mathcal{X};\mathcal{Y})} \leq \epsilon.$$

Application to Turbulent Flow

Learning Linear Operators

Conclusion

One Layer Update

$$x:D\subset\mathbb{R}^d\to\mathbb{R}^n$$

$$y(s) = \sigma \left(Wx(s) + \int_{D} \kappa(s, z)x(z) dz + b(s) \right)$$

Computing the Integral Kernel

- Restrict integration to balls: $\int_D \to \int_{B_r(s)}$.
- Monte Carlo sampling: $\int_D \approx \frac{|D|}{m} \sum_{j=1}^m$.
- Fast Multiple Method.
- Let $\kappa(s,z) = \kappa(s-z)$, parametrize Fourier components θ :

$$\int_{D} \kappa(s-z)x(z) dz = \mathcal{F}^{-1}(\theta \cdot \mathcal{F}(x)).$$

FNO Universal Approximation

Function Space SL

N.B.K.

roblem Settin

Model Reduction

Application to Crystal

Kernel Network Approach

Application to Turbulent Flow

Learning Linea Operators

Conclusion

Theorem

- $D \subseteq \mathbb{T}^d$ bounded, Lipschitz domain.
- $E: H^s(D) \to H^s(\mathbb{T}^d)$ linear, periodic extension operator for $s \geq 0$.
- $\Psi^{\dagger}: H^s(D) \to H^{s'}(D)$ continuous for $s, s' \geq 0$.

For any $K \subset H^s(D)$ compact and $\epsilon > 0$, there exists an architecture $\Psi : H^s(\mathbb{T}^d) \to H^{s'}(\mathbb{T}^d)$ such that

$$\sup_{x\in K}\|\Psi^{\dagger}(x)-\big((\Psi\circ E)(x)\big)|_D\|_{H^{s'}(D)}\leq \epsilon.$$

SI

N.B.K.

Kernel Network Approach

Steady-State Darcy Flow

PDE

 $-\nabla \cdot (a\nabla u) = f$ in \mathbb{T}^d

• s > d/2 + k with $k \in \mathbb{N}$ and $f \in \dot{H}^{k-1}(\mathbb{T}^d)$.

• $a \in H^s(\mathbb{T}^d)$ with $a = 1 + \tilde{a}$ such that, for some $\lambda \in (0,1)$,

• $\Psi^{\dagger}: a \mapsto \mu$.

Theorem

For any
$$\epsilon$$

For any $\epsilon > 0$, there exists a FNO $\Psi : \mathcal{A}_{\lambda}^{s}(\mathbb{T}^{d}) \to H^{1}(\mathbb{T}^{d})$ such that

For any
$$\epsilon>0$$
, there exists a FINO $\Psi:\mathcal{A}^{\epsilon}_{\lambda}(\mathbb{T}^{\epsilon}) o H^{\epsilon}(\mathbb{T}^{\epsilon})$ such

$$\sup_{a\in\mathcal{A}_{\lambda}^{\delta}(\mathbb{T}^{d})}\|\Psi^{\dagger}(a)-\Psi(a)\|_{H^{1}}\leq\epsilon,$$

$$\sup_{a \in \mathcal{A}_{\lambda}^{s}(\mathbb{T}^{d})} \| \Psi^{+}(a) - \Psi(a) \|_{\mathcal{H}^{1}} \leq \epsilon,$$

 $\operatorname{size}(\Psi) \leq e^{-\frac{d}{k}} \log e^{-1}$, $\operatorname{depth}(\Psi) \leq \log e^{-1}$.

 $\|a\|_{H^s} < \lambda^{-1}, \qquad \|\tilde{a}\|_{L^{\infty}} < 1 - \lambda.$

Navier-Stokes/Euler

Function Space SL

N.B.K.

Problem Settin

Model Reductio

Application : Crystal

Kernel Network Approach

Application to Turbulent Flow

Learning Linear Operators

Conclusion

PDE

$$\partial_t u = -\mathsf{P}(u \cdot \nabla u) + \nu \Delta u \quad \text{in} \quad [0, T] \times \mathbb{T}^d$$

- $u \in C([0, T]; H^s) \cap C^1([0, T]; H^{s-2})$ with s > d/2 + 2.
- u_0 divergence-free, mean zero s.t. u exists and is bounded.
- $\Psi^{\dagger}: u_0 \mapsto u(T, \cdot).$

Theorem

For any $\epsilon > 0$, there exists a FNO $\Psi : \mathcal{A}^s(\mathbb{T}^d; \mathbb{R}^d) \to L^2(\mathbb{T}^d; \mathbb{R}^d)$ such that

$$\begin{split} \sup_{a \in \mathcal{A}^s(\mathbb{T}^d)} \| \Psi^\dagger(a) - \Psi(a) \|_{L^2} &\leq \epsilon, \\ \operatorname{size}(\Psi) &\leq \epsilon^{-\left(\frac{1}{2} + \frac{d}{s}\right)} \log \epsilon^{-1}, \qquad \operatorname{depth}(\Psi) &\leq \epsilon^{-\frac{1}{2}} \log \epsilon^{-1}. \end{split}$$

Caltech Example: Burgers

Function Space SL

N.B.K.

Problem Settin

Model Reduction Approach

Application Crystal Plasticity

Kernel Network Approach

Application to Turbulent Flow

Learning Linea Operators

Conclusion

Burgers' Equation

$$egin{aligned} \partial_t u + \partial_z (u^2/2) &= \nu \partial_{zz} u, & (z,t) \in \mathbb{T}^1 imes (0,1] \ & u|_{t=0} &= u_0, & z \in \mathbb{T}^1. \end{aligned}$$

Operator Of Interest

Nonlinear $\Psi^{\dagger}: u_0 \in L^2(\mathbb{T}^1) \mapsto u|_{t=1} \in H^s(\mathbb{T}^1).$

Example: Burgers

Function Space SL

N.B.K.

Problem Settin

Model Reduction Approach

Application Crystal Plasticity

Kernel Network Approach

Application to Turbulent Flow

Learning Linea Operators

Conclusion

Input-Output

 $\mathsf{Input:} \quad u_0 \in L^2(\mathbb{T}^1) \quad {}_{\mathsf{(Left)}},$

Output: $u \in H^s(\mathbb{T}^1)$. (Right),

Caltech Example: Burgers

Function Space SL N.B.K.

Problem Setting

Model Reduction

Application to Crystal

Kernel Network Approach

Application to Turbulent Flow

Learning Linear Operators

Conclusion

Caltech Example: Darcy Inverse Problem

Function Space SL N.B.K.

Problem Settin

Model Reduction Approach

Application Crystal Plasticity

Kernel Network Approach

Application to Turbulent Flow

Coperators

Conclusion

Function Space SL

N.B.K.

Problem Setting

Model Reduction Approach

Application to Crystal Plasticity

Kernel Network

Application to

Learning Linea

Conclusion

Application to Turbulent Flow

Z Li, NB Kovachki, K Azizzadenesheli, BG Liu, K Bhattacharya, AM Stuart and A Anandkumar Fourier Neural Operator for Parametric Partial Differential Equations ICLR (2021). arXiv:2010.08895 Markov Neural Operators for Learning Chaotic Systems arXiv:2106.06898

Fluid Flow on the Torus

Function Space SL

N.B.K.

Problem Settir

Model Reduction Approach

Application of Crystal Plasticity

Kernel Network Approach

Application to Turbulent Flow

Learning Linear Operators

Conclusion

Nonlinear PDE

$$rac{du}{dt} -
u \mathsf{P} \Delta u + \mathsf{P} (u \cdot
abla) u = f, \qquad s \in \mathbb{T}^2, t \in [0, T]$$
 $u(0) = u_0 \qquad s \in \mathbb{T}^2$

Operator Of Interest

$$\omega = \nabla \times u$$

$$\Psi^{\dagger} : \omega|_{t=0} \in L^{2}(\mathbb{T}^{2}) \mapsto w|_{t=T} \in H^{s}(\mathbb{T}^{2})$$

Caltech

Predicting Trajectories

Function Space SL

N.B.K.

roblem Setti

Model Reduction Approach

Application to Crystal Plasticity

Kernel Networ Approach

Application to Turbulent Flow

Learning Line Operators

- Re = $\mathcal{O}(10^3)$, N = 10,000, error = 3% in H^1 .
- Trained on 64×64 grid and evaluated on 256×256 .

An Inverse Problem

Function Space SL N.B.K.

Caltech

.

Model Reduction Approach

Application of Crystal Plasticity

Kernel Network
Approach

Application to Turbulent Flow

Learning Linear Operators

Conclusion

• MCMC: 2 minutes for 50,000 samples with FNO, 30 hours with a pseudo-spectral solver.

Caltech

Function Space SL

N.B.K.

Problem Setting

Model Reduction Approach

Application Crystal Plasticity

Kernel Networ

Application to

Learning Linear

Conclusion

Learning Linear Operators from Noisy Data

MV de Hoop, NB Kovachki, NH Nelsen, AM Stuart
Convergence Rates for Learning Linear Operators from Noisy Data
arXiv:2108.12515.

blem Settin

Model Reduction Approach

Crystal Plasticity

Kernel Network Approach

Application to Turbulent Flow

Learning Linear Operators

Conclusion

Setting

Noisy Linear Map: $L^{\dagger}: \mathcal{X} \to \mathcal{Y}, \ y = L^{\dagger}x + \eta$

Assumptions: $\pi(dx, dy)$: $x \sim \mu = N(0, C), \eta \sim N(0, \Gamma), x \perp \eta$

Data: $\{x_n, y_n\}_{n=1}^N \stackrel{i.i.d.}{\sim} \pi$

Risk

Expected Risk: $e_{\infty}(L) = \mathbb{E}_{\{x,y\} \sim \pi} \frac{1}{2} \|Lx\|_{\mathcal{Y}}^2 - \langle y, Lx \rangle_{\mathcal{Y}}$

Empirical Risk:
$$e_N(L) = \frac{1}{N} \sum_{n=1}^{N} \left[\frac{1}{2} \|Lx_n\|_{\mathcal{Y}}^2 - \langle y_n, Lx_n \rangle_{\mathcal{Y}} \right] + \|L\|_{\mathsf{CM}}^2$$

Optimizers:
$$\widehat{L} = \inf_{n} e_{\infty}(L), \quad \widehat{L}^{(N)} = \inf_{n} e_{N}(L)$$

Caltech

Statistical Approximation

Function Space SL

N.B.K.

oblem Setting

Model Reduction Approach

Application Crystal Plasticity

Kernel Networ Approach

Application to Turbulent Flow

Learning Linear Operators

Conclusion

Theorem

Excess Risk: $e_{\infty}(\widehat{L}^{(N)}) - e_{\infty}(\widehat{L}) = \|\widehat{L}^{(N)} - \widehat{L}\|_{L^2_{\mu}(\mathcal{X},\mathcal{Y})}^2$

Theorem

BIP: $Y = R_X L + E$, $X \sim N(0, C)^{\otimes N}$, $E \sim N(0, \Gamma)^{\otimes N}$

Posterior: $L|Y, X \sim \nu^{Y,X}$

Expectation: $\mathbb{E} = \mathbb{E}^{\{x_n, y_n\} \sim \pi^{\otimes N}} \mathbb{E}^{\nu^{Y, X}}$

Error: $C_1 N^{-\alpha} \leq \mathbb{E} \|L - \widehat{L}\|_{L^2(\mathcal{X},\mathcal{Y})}^2 \leq C_2 N^{-\alpha}, \quad \forall N \geq N_c$

Error: $C_1 N^{-\alpha} \leq \|\widehat{L}^{(N)} - \widehat{L}\|_{L^2_u(\mathcal{X},\mathcal{Y})}^2 \leq C_2 N^{-\alpha}, \quad \forall N \geq N_c, \text{ w.h.p.}$

Caltech

Numerical Illustration

Function Space SL

N.B.K.

Problem Setting

Model Reduction

Application to Crystal Plasticity

Kernel Networ Approach

Application to Turbulent Flow

Learning Linear Operators

Conclusion

Learning Compact, Bounded and Unbounded Operators

$$A := -\Delta, \quad D(A) = H^2(I) \cap H^1_0(I), \quad I = (0, 1).$$

 $L = A, \text{ Id}, A^{-1}.$

Caltech Conclusions

Function Space SL

N.B.K.

Model Reduction

Application Crystal Plasticity

Kernel Network Approach

Application to Turbulent Flow

Learning Linear Operators

Conclusion

- 1 Neural networks: empirical success in function approximation.
- 2 Typically:

• regression: $\mathbb{R}^m \mapsto \mathbb{R}^n$;

• classification: $\mathbb{R}^m \mapsto \{1, \dots, K\}$.

- **3** We consider: $\mathcal{X} \mapsto \mathcal{Y}$, \mathcal{X} , \mathcal{Y} function spaces.
- 4 Key Idea: Conceive of architecture then discretize.
- 5 Purely data-driven ("equation-free").
- 6 Applications: PDEs (model available), Cyber-physical systems, Imaging, Time-series (no model available).
- Less data needed to learn the forward than the inverse operator.
- § Future work: theory for data needed to achieve given error, posterior consistency for inverse problems.

Caltech References

Function Space SL

N.B.K.

Reduction

Application

Crystal Plasticity

Kernel Network Approach

Application to Turbulent Flow

Learning Linear Operators

Conclusion

[1] M Raissi, P Perdikaris, GE Karniadakis

Physics-informed neural networks...

J. Comp. Phys. 2019.

[2] Weinan E and B Yu The Deep Ritz Method...

Communications in Mathematics and Statistics 2018.

[3a] Y Zhu and N Zabaras

Bayesian Deep Convolutional Encoder-Decoder Networks...
J. Comp. Phys. 2018.

[3b] Y Khoo, J Lu, L Ying

Solving parametric PDE problems with artificial neural networks arXiv:1707.03351,

[4] L Zwald, O Bousquet, G Blanchard

Statistical properties of kernel principal component analysis...

International Conference on Computational Learning Theory, Springer, 2004.

Caltech References

Function Space SL

N.B.K.

Reduction

Application Crystal

Kernel Networ Approach

Application to Turbulent Flow

Learning Linea Operators

Conclusion

<u>]</u>

[5] D Yarotsky

Error bounds for approximations with deep ReLU networks Neural Networks 2017.

[6] G Kutyniok, P Petersen M Raslan and R Schneider

A theoretical analysis of deep neural networks and parametric PDEs arXiv:1904.00377

[7] C Schwab, J Zech

Deep learning in high dimension: Neural network expression rates for generalized polynomial chaos expansions in UQ Analysis and Applications 2019

[7] A Chkifa, A Cohen, R DeVore and C Schwab

Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs ESAIM: Mathematical Modeling and Numerical Analysis 2013

[8] RA DeVore

The Theoretical Foundation of Reduced Basis Methods Model Reduction and Approximation, SIAM, 2014

Example: Poisson Caltech

Elliptic PDE SI N.B.K.

Function Space

Conclusion

Operator Of Interest

Lemma

Let
$$f = \sum_{j=1}^{\infty}$$

Let
$$f=\sum_{j=1}^\infty \xi_j\phi_j$$
 and suppose $(\|\phi_j\|_{L^\infty})_{j\geq 1}\in\ell^p$ for some $p\in(0,1)$. Then

$$\lim_{K o\infty}\sup_{\xi}\|\Psi^\dagger(\xi)-\sum_{i=1}^K\xi_j\eta_j\|_{H^1_0}=0$$

by viewing $\Psi^{\dagger}: \ell^{\infty} \to H_0^1$, where $-\Delta \eta_i = \phi_i$, $\eta_i|_{\partial D} = 0$ for each $j \in \mathbb{N}$.

 $-\Delta u = f$, $z \in D = (0,1)^2$ u = 0, $z \in \partial D$.

Linear (Forcing)
$$\Psi^{\dagger}: f \in L^2(D) \mapsto u \in H^1_0(D)$$

$$\in L^2(I)$$

Caltech Example: Poisson

Function Space SL

N.B.K.

Problem Settin

Model Reduction Approach

Application t Crystal Plasticity

Kernel Networ Approach

Application to Turbulent Flow

Learning Linear Operators

Conclusion

Input-Output

Input: $f \in L^2(D)$ (Left),
Output: $u \in H^1_0(D)$. (Right),

Caltech Example: Poisson

Function Space SL

N.B.K.

Problem Settir

Model Reduction Approach

Application to Crystal Plasticity

Kernel Netwo Approach

Application to Turbulent Flow

Learning Linear Operators

Function Space SL

N.B.K.

Problem Settin

Model Reduction Approach

Application of Crystal Plasticity

Kernel Networ

Application to Turbulent Flow

Learning Linear Operators

Conclusion

Input-Output

Input: $a \in L^2(D)$ (Left),

Function Space SL

N.B.K.

Problem Settin

Model Reduction Approach

Application to Crystal Plasticity

Kernel Network
Approach

Application to Turbulent Flow

Learning Linear Operators

Function Space SL

N.B.K.

Problem Setting

Model Reduction Approach

Application to Crystal Plasticity

Kernel Netwo Approach

Application to Turbulent Flow

Learning Linea Operators

Caltech Example: Darcy (piecewise-constant)

Function Space SL

N.B.K.

Problem Settin

Model Reduction Approach

Application to Crystal Plasticity

Kernel Netwo Approach

Application to Turbulent Flow

Operators

Function Space SL

N.B.K.

Problem Setting

Model Reduction Approach

Application to Crystal Plasticity

Kernel Netwo Approach

Application to Turbulent Flow

Learning Linea Operators

Caltech Example: Darcy (mesh transfer)

Function Space SL

N.B.K.

Problem Setting

Model Reduction Approach

Application to Crystal Plasticity

Kernel Network Approach

Application to Turbulent Flow

Operators

Figure: (Left) Piecewise-constant. (Right) Log-normal.

Caltech Causality

Function Space SL

N.B.K.

Problem Setting

Model Reduction Approach

Application Crystal Plasticity

Kernel Networ

Application to Turbulent Flow

Learning Linea Operators

Taylor Anvil Test

Function Space SL

Caltech

N.B.K.

Problem Settin

Model Reduction Approach

Application to Crystal
Plasticity

Kernel Networ Approach

Application to Turbulent Flow

Learning Linear Operators

Caltech Blunt Impact

Function Space SL

N.B.K.

Problem Settin

Model Reduction Approach

Application t Crystal Plasticity

Kernel Network
Approach

Application to Turbulent Flow

Learning Linear Operators

Caltech Conv Nets are Parametrized for Grids

N.B.K.

Problem Sett

Model Reduction Approach

Application to Crystal

Kernel Netwo

Application to Turbulent Flow

Learning Linea Operators

Function Space SL

N.B.K.

olem Settin

Model Reduction Approach

Application Crystal Plasticity

Kernel Netwo

Application to Turbulent Flow

Learning Linear Operators

Conclusion

Elliptic PDE

$$-\Delta u = f, \quad z \in D = (0,1)$$

$$u = 0, \quad z \in \partial D.$$

Operator Of Interest

Linear (Forcing) $\Psi^{\dagger}: f \in L^2(D) \mapsto u \in H^1_0(D)$

Architecture

$$u(s) = \int_{D} \kappa(s, z; \theta) f(z) dz$$

Caltech Example: Poisson

Function Space SL

N.B.K.

Problem Settin

Model Reduction Approach

Application t Crystal Plasticity

Kernel Networ Approach

Application to Turbulent Flow

Learning Linea Operators

